当前位置: X-MOL 学术Numer. Methods Partial Differ. Equ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A modified sensitivity equation method for the Euler equations in presence of shocks
Numerical Methods for Partial Differential Equations ( IF 3.9 ) Pub Date : 2019-12-18 , DOI: 10.1002/num.22454
Camilla Fiorini 1 , Christophe Chalons 2 , Régis Duvigneau 3
Affiliation  

The Continuous Sensitivity Equation (CSE) method allows to quantify how changes in the input of a Partial Differential Equation (PDE) model affect the outputs, by solving additional PDEs ob- tained by differentiating the model. However, this method cannot be used directly in the framework of hyperbolic PDE systems with discontinuous solution, because it yields Dirac delta functions in the sensitivity solution at the location of state discontinuities. This difficulty is well known from theoret- ical viewpoint, but only a few works can be found in the literature regarding the possible numerical treatment. Therefore, we investigate in this study how classical numerical schemes for compressible Euler equations can be modified to account for shocks when computing the sensitivity solution. In particular, we propose the introduction of a source term, that allows to remove the spikes associated to the Dirac delta functions in the numerical solution. Numerical studies exhibit a strong impact of the numerical diffusion on the accuracy of this strategy. Therefore, we propose an anti-diffusive numerical scheme coupled with the approximate Riemann solver of Roe for the state problem. For the sensitivity problem, two different numerical schemes are implemented and compared: one which takes into account the contact wave and another that neglects it. The effects of the numerical diffu- sion on the convergence of the schemes with respect to the grid are discussed. Finally, an application to uncertainty propagation is investigated and the different numerical schemes are compared.

中文翻译:

存在冲击时欧拉方程的修正灵敏度方程方法

连续灵敏度方程 (CSE) 方法允许量化偏微分方程 (PDE) 模型的输入变化如何影响输出,方法是求解通过对模型进行微分获得的额外 PDE。然而,这种方法不能直接用于具有不连续解的双曲线 PDE 系统的框架中,因为它在状态不连续处的灵敏度解中产生 Dirac delta 函数。从理论的角度来看,这个困难是众所周知的,但在有关可能的数值处理的文献中只能找到少数作品。因此,我们在本研究中调查了如何修改可压缩欧拉方程的经典数值方案以在计算灵敏度解时考虑冲击。我们特别建议引入一个源术语,这允许在数值解中去除与 Dirac delta 函数相关的尖峰。数值研究表明数值扩散对这种策略的准确性有很大的影响。因此,我们提出了一种反扩散数值方案,结合 Roe 的近似黎曼求解器来解决状态问题。对于灵敏度问题,实现并比较了两种不同的数值方案:一种考虑接触波,另一种忽略接触波。讨论了数值扩散对网格方案收敛的影响。最后,研究了不确定性传播的应用,并比较了不同的数值方案。数值研究表明数值扩散对这种策略的准确性有很大的影响。因此,我们提出了一种反扩散数值方案,结合 Roe 的近似黎曼求解器来解决状态问题。对于灵敏度问题,实现并比较了两种不同的数值方案:一种考虑接触波,另一种忽略接触波。讨论了数值扩散对网格方案收敛的影响。最后,研究了不确定性传播的应用,并比较了不同的数值方案。数值研究表明数值扩散对这种策略的准确性有很大的影响。因此,我们提出了一种反扩散数值方案,结合 Roe 的近似黎曼求解器来解决状态问题。对于灵敏度问题,实现并比较了两种不同的数值方案:一种考虑接触波,另一种忽略接触波。讨论了数值扩散对网格方案收敛的影响。最后,研究了不确定性传播的应用,并比较了不同的数值方案。对于灵敏度问题,实现并比较了两种不同的数值方案:一种考虑接触波,另一种忽略接触波。讨论了数值扩散对网格方案收敛的影响。最后,研究了不确定性传播的应用,并比较了不同的数值方案。对于灵敏度问题,实现并比较了两种不同的数值方案:一种考虑接触波,另一种忽略接触波。讨论了数值扩散对网格方案收敛的影响。最后,研究了不确定性传播的应用,并比较了不同的数值方案。
更新日期:2019-12-18
down
wechat
bug