当前位置: X-MOL 学术Oikos › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Testing the effect of quantitative genetic inheritance in structured models on projections of population dynamics
Oikos ( IF 3.4 ) Pub Date : 2020-01-27 , DOI: 10.1111/oik.06985
Emily G. Simmonds 1, 2 , Ella F. Cole 1 , Ben C. Sheldon 1 , Tim Coulson 1
Affiliation  

Global climate change is altering the timing of life history events for species living in seasonal environments. These shifts in phenology can lead to the disruption of interspecific relationships with implications for individual fitness. Predicting phenological change and its population level consequences can provide insights into population persistence. Achieving this is challenging for labile traits as current structured population models do not explicitly distinguish between the roles of phenotypic plasticity and micro‐evolution, hindering realistic predictions of trait change. In this study we present the first empirical test of a new integral projection model (IPM) framework, which allows phenotypic plasticity and micro‐evolution to be teased apart by incorporating a quantitative genetic inheritance function. We parameterise this model for a population of wild great tits Parus major and test its predictive capabilities through K‐fold cross validation. We test the predictive accuracy of the quantitative genetic IPM in comparison to the standard IPM. We demonstrate that adding genetic inheritance rules maintains high accuracy of projections of phenological change, relative to the standard IPM. In addition, we find almost identical projections of population dynamics in this population for both IPMs, demonstrating that this model formulation allows researchers to investigate the contributions of phenotypic plasticity and micro‐evolution to trait change, without sacrificing predictive accuracy. Modelling in this way reveals that, under directional environmental change, both micro‐evolution and plasticity contribute to an advance of phenology, although the effect of plasticity is an order of magnitude higher than evolution. Despite this, synchrony between great tits and their caterpillar prey was reduced and population declines occurred. Our approach demonstrates that this model framework provides a promising avenue through which to explore the roles of phenotypic plasticity and evolution in trait changes and population dynamics.

中文翻译:

测试结构化模型中定量遗传遗传对种群动态预测的影响

全球气候变化正在改变生活在季节性环境中的物种的生活史事件的发生时间。物候方面的这些变化可能会导致种间关系的破坏,从而影响个体适应性。预测物候变化及其对人口的影响可以提供有关人口持久性的见解。实现这一点对于不稳定的性状具有挑战性,因为当前的结构化种群模型并未明确区分表型可塑性和微观进化的作用,从而阻碍了对性状变化的现实预测。在这项研究中,我们提出了一个新的积分投影模型(IPM)框架的首次经验测试,该框架允许通过合并定量遗传功能来分离表型可塑性和微观进化。大型专业并通过K折交叉验证来测试其预测能力。与标准IPM相比,我们测试了定量遗传IPM的预测准确性。我们证明,相对于标准IPM,添加遗传继承规则可保持对物候变化预测的高精度。此外,我们发现这两种IPM的种群动态几乎完全相同,这表明该模型的制定使研究人员能够在不牺牲预测准确性的情况下研究表型可塑性和微观进化对性状变化的贡献。通过这种方式进行的建模表明,在定向环境变化下,微观可塑性和可塑性都有助于物候学的发展,尽管可塑性的影响要比进化高一个数量级。尽管如此,大山雀和它们的毛毛虫猎物之间的同步减少了,种群减少了。我们的方法表明,该模型框架提供了一个有前途的途径,可通过该途径探索表型可塑性和进化在性状变化和种群动态中的作用。
更新日期:2020-01-27
down
wechat
bug