当前位置: X-MOL 学术J. Mater. Process. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid Manufacturing of Components from Ti-6Al-4 V by Metal Forming and Wire-Arc Additive Manufacturing
Journal of Materials Processing Technology ( IF 6.3 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.jmatprotec.2020.116689
M. Bambach , I. Sizova , B. Sydow , S. Hemes , F. Meiners

Abstract The manufacturing of components from the titanium alloy Ti-6Al-4 V is of great significance for many industrial sectors. The production of high-performance Ti-6Al-4 V components typically requires multiple hot forging steps and leads to parts with tolerances that need extensive machining to create the final shape. For many applications, net-shape technologies such as additive manufacturing (AM) could enable a higher material yield. However, with the part size, cost and processing time in AM rise rapidly. Thus, the advantages of AM and forging operations could be exploited by combining both processes to new hybrid process chains. The present study investigates the use of Wire-Arc additive manufacturing (WAAM) for hybrid manufacturing of Ti-6Al-4 V aerospace components. Two process routes are investigated that combine forming and AM processes. In the first process route, a WAAM process is used to generate a pre-shaped semi-finished part. The semi-finished part will then be forged using a single forming tool to obtain the final part contour. The second process route utilizes a conventionally forged pre-form, onto which features of the final workpiece are added using WAAM. The results confirm that hybrid technologies combining WAAM and forging are very promising for Ti-6Al-4 V part production. A jet engine blade produced by WAAM and subsequent forging shows microstructures typically produced in conventional processing of Ti-6Al-4 V alloy and exhibits tensile properties, which exceed the specification level of cast and forged Ti-6Al-4 V material. Features created by WAAM on forged pre-forms are shown to reach the mechanical properties required to combine both technologies. The combination of WAAM and forging may hence be used to develop new manufacturing chains that allow for higher material yield and flexibility than conventional forging.

中文翻译:

通过金属成型和电弧增材制造混合制造 Ti-6Al-4 V 部件

摘要 Ti-6Al-4 V 钛合金部件的制造对许多工业部门具有重要意义。高性能 Ti-6Al-4 V 部件的生产通常需要多个热锻步骤,并导致零件具有公差,需要进行大量机加工才能形成最终形状。对于许多应用,增材制造 (AM) 等净成型技术可以实现更高的材料产量。然而,随着零件尺寸的增加,增材制造中的成本和加工时间迅速上升。因此,通过将两种工艺结合到新的混合工艺链中,可以利用增材制造和锻造操作的优势。本研究调查了使用线弧增材制造 (WAAM) 混合制造 Ti-6Al-4 V 航空航天部件。研究了结合成型和增材制造工艺的两种工艺路线。在第一个工艺路线中,WAAM 工艺用于生成预成型的半成品零件。然后将使用单个成形工具锻造半成品零件以获得最终零件轮廓。第二条工艺路线使用传统锻造的预成型件,使用 WAAM 将最终工件的特征添加到该预成型件上。结果证实,结合 WAAM 和锻造的混合技术对于 Ti-6Al-4 V 零件生产非常有前景。由 WAAM 和后续锻造生产的喷气发动机叶片显示出通常在 Ti-6Al-4 V 合金的常规加工中产生的微观结构,并表现出拉伸性能,超过了铸造和锻造 Ti-6Al-4 V 材料的规格水平。WAAM 在锻造预成型件上创建的特征显示可达到结合这两种技术所需的机械性能。因此,WAAM 和锻造的组合可用于开发新的制造链,与传统锻造相比,该制造链允许更高的材料产量和灵活性。
更新日期:2020-08-01
down
wechat
bug