当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular dynamics simulations and mathematical optimization method for surface structures regarding evaporation heat transfer enhancement at the nanoscale
International Journal of Heat and Mass Transfer ( IF 5.2 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.ijheatmasstransfer.2020.119616
Qun Cao , Wei Shao , Zheng Cui

Abstract Surfaces with nanostructures can significantly enhance the evaporation heat transfer process. Most previous investigations on the designed surface structures using the empirical way to find better geometries. This paper proposes an optimization method for different types of nanostructured surfaces to seek optimal structures mathematically under the given heat transfer area. In this paper, three defined types of nanostructured surfaces are discussed: concave, convex and concave-convex. Firstly, a positive correlation between the evaporation heat transfer performance and the defined sectional area of the liquid phase is obtained by molecular dynamics simulations of the empirically designed nanostructured surfaces. Then, the optimization of the surface geometry converts to a mathematical problem which to solve the maximum sectional area of the liquid phase. This method is used to optimize the geometries of the concave and convex surfaces. Moreover, the molecular dynamics simulation results indicate that the optimal surfaces conduce to better heat transfer performance than the normal concave, convex and concave-convex ones. Finally, to explain the mechanism, the investigations of the atomic potential energy distributions of liquid atoms, the interaction energy between solid and liquid atoms, the solid-liquid interfacial thermal resistance and the morphology of the liquid-vapor interface are done.

中文翻译:

纳米尺度蒸发传热强化的表面结构分子动力学模拟与数学优化方法

摘要 具有纳米结构的表面可以显着增强蒸发传热过程。大多数以前对设计的表面结构的研究都是使用经验方法来寻找更好的几何形状。本文提出了一种针对不同类型纳米结构表面的优化方法,以在给定的传热面积下从数学上寻求最佳结构。在本文中,讨论了三种定义类型的纳米结构表面:凹面、凸面和凹凸面。首先,通过经验设计的纳米结构表面的分子动力学模拟,获得了蒸发传热性能与定义的液相截面积之间的正相关。然后,表面几何结构的优化转化为求解液相最大截面积的数学问题。该方法用于优化凹凸表面的几何形状。此外,分子动力学模拟结果表明,最佳表面比普通凹面、凸面和凹凸面有利于更好的传热性能。最后,为了解释机理,研究了液体原子的原子势能分布、固液原子之间的相互作用能、固液界面热阻和液气界面形貌。分子动力学模拟结果表明,最佳表面比普通凹面、凸面和凹凸面有利于更好的传热性能。最后,为了解释机理,研究了液体原子的原子势能分布、固液原子之间的相互作用能、固液界面热阻和液气界面形貌。分子动力学模拟结果表明,最佳表面比普通凹面、凸面和凹凸面有利于更好的传热性能。最后,为了解释机理,研究了液体原子的原子势能分布、固液原子之间的相互作用能、固液界面热阻和液气界面形貌。
更新日期:2020-06-01
down
wechat
bug