当前位置: X-MOL 学术Acta Astronaut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The EcAMSat Fluidic System to Study Antibiotic Resistance in Low Earth Orbit: Development and Lessons Learned from Space Flight
Acta Astronautica ( IF 3.5 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.actaastro.2020.02.031
Michael R. Padgen , Tori N. Chinn , Charlie R. Friedericks , Matthew P. Lera , Matthew Chin , Macarena P. Parra , Matthew E. Piccini , Antonio J. Ricco , Stevan M. Spremo

Abstract The E. coli AntiMicrobial Satellite (EcAMSat) was a successful spaceflight mission that performed an autonomous experiment to investigate the effects of microgravity on the antibiotic resistance of uropathogenic E. coli; the latest in a series of biology-focused CubeSats developed at NASA Ames Research Center. While maintaining the bacteria at 37 °C, the payload delivered growth medium, different doses of the antibiotic gentamicin, and finally the metabolic indicator alamarBlue to each of 48 microwells in the fluidic card. An LED and detector system was used to monitor the changes in absorbance in each experiment well at three wavelengths (470, 525, and 615 nm), from which the growth of cells and their metabolic activity could be measured. The success of the mission was in part due to leveraging lessons learned and proven technologies from previous bio-CubeSat missions, including modified spare hardware from the PharmaSat payload. This paper details the design and assembly of the biofluidic system payload; the modifications to the PharmaSat hardware required to run the EcAMSat experiment and the challenges those changes created; and finally, the testing approach employed to ensure the success of the payload during the flight campaign.

中文翻译:

用于研究近地轨道抗生素耐药性的 EcAMSat 流体系统:太空飞行的发展和经验教训

摘要 大肠杆菌抗微生物卫星(EcAMSat)是一项成功的航天任务,它进行了自主实验,研究了微重力对尿路致病性大肠杆菌抗生素耐药性的影响;美国宇航局艾姆斯研究中心开发的一系列以生物学为重点的立方体卫星中的最新一个。在将细菌保持在 37 °C 的同时,有效载荷将生长培养基、不同剂量的抗生素庆大霉素和最后的代谢指示剂 alamarBlue 输送到流体卡中的 48 个微孔中的每一个。LED 和检测器系统用于监测每个实验孔在三个波长(470、525 和 615 nm)下的吸光度变化,从中可以测量细胞的生长及其代谢活动。此次任务的成功部分归功于利用之前 bio-CubeSat 任务的经验教训和经过验证的技术,包括来自 PharmaSat 有效载荷的修改后的备用硬件。本文详细介绍了生物流体系统有效载荷的设计和组装;运行 EcAMSat 实验所需的 PharmaSat 硬件的修改以及这些变化带来的挑战;最后,用于确保有效载荷在飞行活动期间成功的测试方法。
更新日期:2020-08-01
down
wechat
bug