当前位置: X-MOL 学术J. Franklin Inst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Piecewise analytic optimized ascent trajectory design and robust adaptive finite-time tracking control for hypersonic boost-glide vehicle
Journal of the Franklin Institute ( IF 4.1 ) Pub Date : 2020-03-19 , DOI: 10.1016/j.jfranklin.2020.03.002
Sheng Zhai , Jianying Yang

This paper proposes a novel robust real-time trajectory optimization method to obtain the analytic solutions for hypersonic boost-glide vehicle (HBGV), and the corresponding robust adaptive controller is designed to lead the tracking error to a small neighborhood near zero in finite time. The cost functions reflect the constraints and the direction of trajectory optimization about several essential traits, such as dynamic pressure, load factor, heat flux and thrust. Through the conditions on continuity and constraints at the joint points, the parameters of piecewise analytic ascent trajectory could be automatically modulated. Additionally, the real-time robustness of the analytic trajectory is guaranteed by replacing initial values with current states. Then, the referenced program pitch angle with far more practical application value for tracking problem is exported. Next, a controller integrating nonsingular terminal sliding mode control (NTSMC) with adaptive control is employed to guarantee that the closed-loop tracking system is robust under time-varying uncertainties with unknown bounds. The finite-time convergence is theoretically proved by detailed analyses on Lyapunov functions. In the end, simulation results demonstrate the feasibility of the piecewise analytic optimized ascent trajectory and the validity of the tracking controller in comparison with NTSMC and proportional derivative (PD) control.



中文翻译:

高超音速助推滑行飞行器的分段解析优化上升轨迹设计和鲁棒自适应有限时间跟踪控制

本文提出了一种新颖的鲁棒实时轨迹优化方法,以获得高超音速助推滑行飞行器(HBGV)的解析解,并设计了相应的鲁棒自适应控制器,以在有限的时间内将跟踪误差引向零附近的小邻域。成本函数反映了一些基本特征的约束条件和轨迹优化方向,例如动态压力,负载系数,热通量和推力。通过连接点的连续性和约束条件,可以自动调节分段分析上升轨迹的参数。此外,通过将初始值替换为当前状态,可以确保分析轨迹的实时鲁棒性。然后,导出具有更实际应用价值的跟踪程序俯仰角。接下来,采用将非奇异终端滑模控制(NTSMC)与自适应控制相集成的控制器,以确保闭环跟踪系统在具有未知界限的时变不确定性下具有鲁棒性。通过对Lyapunov函数的详细分析,从理论上证明了有限时间收敛。最后,仿真结果证明了与NTSMC和比例微分(PD)控制相比,分段分析优化上升轨迹的可行性以及跟踪控制器的有效性。控制器采用非奇异终端滑模控制(NTSMC)与自适应控制相集成的控制器,以确保闭环跟踪系统在未知边界的时变不确定性下具有鲁棒性。通过对Lyapunov函数的详细分析,从理论上证明了有限时间收敛。最后,仿真结果证明了与NTSMC和比例微分(PD)控制相比,分段分析优化上升轨迹的可行性以及跟踪控制器的有效性。控制器采用非奇异终端滑模控制(NTSMC)与自适应控制相集成的控制器,以确保闭环跟踪系统在未知边界的时变不确定性下具有鲁棒性。通过对Lyapunov函数的详细分析,从理论上证明了有限时间收敛。最后,仿真结果证明了与NTSMC和比例微分(PD)控制相比,分段分析优化的上升轨迹的可行性以及跟踪控制器的有效性。

更新日期:2020-03-19
down
wechat
bug