当前位置: X-MOL 学术J. Math. Anal. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase-isometries on real normed spaces
Journal of Mathematical Analysis and Applications ( IF 1.3 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.jmaa.2020.124058
Dongni Tan , Xujian Huang

We say that a mapping $f: X \rightarrow Y$ between two real normed spaces is a phase-isometry if it satisfies the functional equation \begin{eqnarray*} \{\|f(x)+f(y)\|, \|f(x)-f(y)\|\}=\{\|x+y\|, \|x-y\|\} \quad (x,y\in X).\end{eqnarray*} A generalized Mazur-Ulam question is whether every surjective phase-isometry is a multiplication of a linear isometry and a map with range $\{-1, 1\}$. This assertion is also an extension of a fundamental statement in the mathematical description of quantum mechanics, Wigner's theorem to real normed spaces. In this paper, we show that for every space $Y$ the problem is solved in positive way if $X$ is a smooth normed space, an $\mathcal{L}^{\infty}(\Gamma)$-type space or an $\ell^1(\Gamma)$-space with $\Gamma$ being an index set.

中文翻译:

实赋范空间上的相位等距

如果满足函数方程 \begin{eqnarray*} \{\|f(x)+f(y)\|,我们说两个实范数空间之间的映射 $f: X \rightarrow Y$ 是相位等距, \|f(x)-f(y)\|\}=\{\|x+y\|, \|xy\|\} \quad (x,y\in X).\end{eqnarray*一个广义的 Mazur-Ulam 问题是,是否每个满射相位等距都是线性等距和范围为 $\{-1, 1\}$ 的映射的乘积。这个断言也是量子力学数学描述中一个基本陈述的延伸,即维格纳定理到实范数空间。在本文中,我们证明了对于每个空间 $Y$,如果 $X$ 是一个平滑的赋范空间,一个 $\mathcal{L}^{\infty}(\Gamma)$ 类型的空间,则问题以正方式解决或 $\ell^1(\Gamma)$ 空间,其中 $\Gamma$ 是索引集。
更新日期:2020-08-01
down
wechat
bug