当前位置: X-MOL 学术Phys. Rev. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic Skyrmion Tubes as Nonplanar Magnonic Waveguides
Physical Review Applied ( IF 4.6 ) Pub Date : 2020-03-19 , DOI: 10.1103/physrevapplied.13.034051
Xiangjun Xing , Yan Zhou , H.B. Braun

Various recent experiments have proven the theoretical prediction that domain walls in planar magnetic structures can channel spin waves as magnonic waveguides, establishing a platform for building magnonic devices. Recently, three-dimensional nanomagnetism has been boosted and become a significant branch of magnetism, because three-dimensional magnetic structures expose much emerging physics hidden behind planar ones and will provide broader room for device engineering. Skyrmions and antiskyrmions, as natural three-dimensional magnetic configurations, are not considered yet in the context of spin-wave channeling and steering. Here, we show that skyrmion tubes can act as nonplanar magnonic waveguides, if excited suitably. An isolated skyrmion tube in a magnetic nanoprism induces spatially separate internal and edge channels of spin waves; the internal channel has a narrower energy gap, compared with that of the edge channel and, accordingly, can transmit signals at lower frequencies. Additionally, we verify that those spin-wave beams along the magnetic nanoprism are restricted to the regions of potential wells. Transmission of spin-wave signals in such waveguides results from the coherent propagation of locally driven eigenmodes of skyrmions, i.e., the breathing and rotational modes. Finally, we find that spin waves along the internal channels are less susceptible to the magnetic field than those along the edge channels. Our work will open up an arena for spin-wave manipulation and help to bridge between skyrmionics and magnonics.

中文翻译:

磁Skyrmion管作为非平面磁波导管

最近的各种实验证明了理论上的预测,即平面磁性结构中的畴壁可以将自旋波作为强磁波导传输,从而为构建强磁设备建立了平台。最近,三维纳米磁性得到了增强,并成为磁性的重要分支,因为三维磁性结构暴露了许多隐藏在平面结构背后的新兴物理,并将为器件工程提供更大的空间。在自旋波通道和操纵的背景下,天生离子和抗天生离子作为自然的三维磁性构型尚未被考虑。在这里,我们表明,如果适当地激发,天rm子管可以充当非平面的强子波导管。磁性纳米棱镜中的一个隔离的Skyrmion管引起空间上分离的自旋波内部通道和边缘通道;与边缘通道相比,内部通道的能隙更窄,因此可以以较低的频率传输信号。此外,我们验证了那些沿着磁性纳米棱镜的自旋波束被限制在势阱区域。自旋波信号在这样的波导中的传输是由于天体离子的局部驱动本征模式(即呼吸模式和旋转模式)的相干传播而引起的。最后,我们发现,沿着内部通道的自旋波比沿着边缘通道的自旋波对磁场的敏感性更低。我们的工作将为自旋波操纵开辟一个舞台,并帮助在天体电子学和大地磁学之间架起桥梁。我们验证了那些沿着磁性纳米棱镜的自旋波束被限制在势阱区域。自旋波信号在这样的波导中的传输是由于天体离子的局部驱动本征模式(即呼吸模式和旋转模式)的相干传播而引起的。最后,我们发现,沿着内部通道的自旋波比沿着边缘通道的自旋波对磁场的敏感性更低。我们的工作将为自旋波操纵开辟一个舞台,并帮助在天体电子学和大地磁学之间架起桥梁。我们验证了那些沿着磁性纳米棱镜的自旋波束被限制在势阱区域。自旋波信号在这样的波导中的传输是由于天体离子的局部驱动本征模式(即呼吸模式和旋转模式)的相干传播而引起的。最后,我们发现,沿着内部通道的自旋波比沿着边缘通道的自旋波对磁场的敏感性更低。我们的工作将为自旋波操纵开辟一个舞台,并帮助在天体电子学和大地磁学之间架起桥梁。我们发现,沿着内部通道的自旋波比沿着边缘通道的自旋波对磁场的敏感性更低。我们的工作将为自旋波操纵开辟一个舞台,并帮助在天体电子学和大地磁学之间架起桥梁。我们发现,沿着内部通道的自旋波比沿着边缘通道的自旋波对磁场的敏感性更低。我们的工作将为自旋波操纵开辟一个舞台,并帮助在天体电子学和大地磁学之间架起桥梁。
更新日期:2020-03-20
down
wechat
bug