当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Hardness of Bounded Distance Decoding on Lattices in $\ell_p$ Norms
arXiv - CS - Computational Complexity Pub Date : 2020-03-17 , DOI: arxiv-2003.07903
Huck Bennett; Chris Peikert

$ \newcommand{\Z}{\mathbb{Z}} \newcommand{\eps}{\varepsilon} \newcommand{\cc}[1]{\mathsf{#1}} \newcommand{\NP}{\cc{NP}} \newcommand{\problem}[1]{\mathrm{#1}} \newcommand{\BDD}{\problem{BDD}} $Bounded Distance Decoding $\BDD_{p,\alpha}$ is the problem of decoding a lattice when the target point is promised to be within an $\alpha$ factor of the minimum distance of the lattice, in the $\ell_{p}$ norm. We prove that $\BDD_{p, \alpha}$ is $\NP$-hard under randomized reductions where $\alpha \to 1/2$ as $p \to \infty$ (and for $\alpha=1/2$ when $p=\infty$), thereby showing the hardness of decoding for distances approaching the unique-decoding radius for large $p$. We also show fine-grained hardness for $\BDD_{p,\alpha}$. For example, we prove that for all $p \in [1,\infty) \setminus 2\Z$ and constants $C > 1, \eps > 0$, there is no $2^{(1-\eps)n/C}$-time algorithm for $\BDD_{p,\alpha}$ for some constant $\alpha$ (which approaches $1/2$ as $p \to \infty$), assuming the randomized Strong Exponential Time Hypothesis (SETH). Moreover, essentially all of our results also hold (under analogous non-uniform assumptions) for $\BDD$ with preprocessing, in which unbounded precomputation can be applied to the lattice before the target is available. Compared to prior work on the hardness of $\BDD_{p,\alpha}$ by Liu, Lyubashevsky, and Micciancio (APPROX-RANDOM 2008), our results improve the values of $\alpha$ for which the problem is known to be $\NP$-hard for all $p > p_1 \approx 4.2773$, and give the very first fine-grained hardness for $\BDD$ (in any norm). Our reductions rely on a special family of "locally dense" lattices in $\ell_{p}$ norms, which we construct by modifying the integer-lattice sparsification technique of Aggarwal and Stephens-Davidowitz (STOC 2018).
更新日期:2020-03-19

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug