当前位置: X-MOL 学术J. Phys. Chem. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoscale Elastocapillary Effect Induced by Thin-Liquid-Film Instability
The Journal of Physical Chemistry Letters ( IF 5.7 ) Pub Date : 2020-03-24 , DOI: 10.1021/acs.jpclett.0c00218
Nandi Vrancken 1, 2, 3 , Tanmay Ghosh 1, 4 , Utkarsh Anand 1, 4, 5 , Zainul Aabdin 1, 4, 5, 6 , See Wee Chee 1, 4, 5 , Zhaslan Baraissov 1, 4, 5 , Herman Terryn 2 , Stefan De Gendt 3, 7 , Zheng Tao 3 , XiuMei Xu 3 , Frank Holsteyns 3 , Utkur Mirsaidov 1, 4, 5, 8
Affiliation  

Dense arrays of high-aspect-ratio (HAR) vertical nanostructures are essential elements of microelectronic components, photovoltaics, nanoelectromechanical, and energy storage devices. One of the critical challenges in manufacturing the HAR nanostructures is to prevent their capillary-induced aggregation during solution-based nanofabrication processes. Despite the importance of controlling capillary effects, the detailed mechanisms of how a solution interacts with nanostructures are not well understood. Using in situ liquid cell transmission electron microscopy (TEM), we track the dynamics of nanoscale drying process of HAR silicon (Si) nanopillars in real-time and identify a new mechanism responsible for pattern collapse and nanostructure aggregation. During drying, deflection and aggregation of nanopillars are driven by thin-liquid-film instability, which results in much stronger capillary interactions between the nanopillars than the commonly proposed lateral meniscus interaction forces. The importance of thin-film instability in dewetting has been overlooked in prevalent theories on elastocapillary aggregation. The new dynamic mechanism revealed by in situ visualization is essential for the development of robust nanofabrication processes.

中文翻译:

液膜不稳定性引起的纳米级毛细管电效应

高纵横比(HAR)垂直纳米结构的密集阵列是微电子组件,光伏,纳米机电和能量存储设备的基本元素。制造HAR纳米结构的关键挑战之一是在基于溶液的纳米加工过程中防止其毛细管诱导的聚集。尽管控制毛细作用的重要性,但人们对溶液与纳米结构相互作用的详细机理尚不十分了解。原位使用液体细胞透射电子显微镜(TEM),我们实时跟踪HAR硅(Si)纳米柱的纳米级干燥过程的动力学,并确定造成图案塌陷和纳米结构聚集的新机制。在干燥过程中,纳米柱的挠曲和聚集是由薄膜液膜的不稳定性驱动的,这导致纳米柱之间的毛细管相互作用比通常提出的横向弯液面相互作用力强得多。在弹性毛细管聚集的流行理论中,薄膜不稳定性在去湿中的重要性已被忽略。原位可视化揭示的新的动力学机制对于开发强大的纳米加工工艺至关重要。
更新日期:2020-03-24
down
wechat
bug