当前位置: X-MOL 学术J. Energy Storage › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biochar-based composites as electrode active materials in hybrid supercapacitors with particular focus on surface topography and morphology
Journal of Energy Storage ( IF 9.4 ) Pub Date : 2020-03-16 , DOI: 10.1016/j.est.2020.101291
Omid Norouzi , Francesco Di Maria , Animesh Dutta

The development of biochar-based composites from biomass and the prospect of developing carbon-based electrodes have attracted considerable attention within the electrochemistry community. Although functional carbon-based materials (e.g. activated carbon, carbon nanotubes/fibers, and graphene) are conventionally used as an electrode in energy storage systems due to their low potential plateau, acceptable capacity, and stable cycling performance, there still are significant disadvantages associated with these materials reliance on fossil fuels and energy-intensive synthesis conditions which make them environmentally harmful and costly. Hence, the conversion of biomass into biochar-based composites with desirable structure (i.e. heteroatom doped, hierarchical porous, interconnected 3D pore network, few-layer graphene, few-walled carbon nanotubes (CNTs), and olive and circular-shaped structures) has recently been introduced as an alternative to conventional electrode active material and successfully enhanced the energy content and mitigated waste management issues. Herein we review and summarize the various physical and chemical modifications for biochar-based composites and compare their electrochemical behaviors in energy storage systems. To the authors' knowledge, there is presently no available literature that concisely summarizes the surface topography and morphology on nitrogen-based 3D interconnected composites.



中文翻译:

生物炭基复合材料作为混合超级电容器中的电极活性材料,特别关注表面形貌和形态

由生物质开发生物炭基复合材料以及开发碳基电极的前景在电化学界引起了相当大的关注。尽管功能性碳基材料(例如,活性碳,碳纳米管/纤维和石墨烯)由于其低电位平台,可接受的容量和稳定的循环性能而通常用作储能系统中的电极,但仍存在明显的缺点这些材料依赖化石燃料和高能耗的合成条件,这使其对环境有害且成本高昂。因此,将生物质转化为具有所需结构(即杂原子掺杂,分层多孔,相互连接的3D孔网络,几层石墨烯,近年来,人们已经引入了半壁碳纳米管(CNTs)和橄榄形和圆形结构作为常规电极活性材料的替代品,成功地提高了能量含量并减轻了废物管理问题。本文中,我们回顾并总结了基于生物炭的复合材料的各种物理和化学改性,并比较了它们在储能系统中的电化学行为。据作者所知,目前没有可用的文献简要概述基于氮的3D互连复合材料的表面形貌和形态。本文中,我们回顾并总结了基于生物炭的复合材料的各种物理和化学改性,并比较了它们在储能系统中的电化学行为。据作者所知,目前没有可用的文献简要概述基于氮的3D互连复合材料的表面形貌和形态。本文中,我们回顾并总结了基于生物炭的复合材料的各种物理和化学改性,并比较了它们在储能系统中的电化学行为。据作者所知,目前没有可用的文献简要概述基于氮的3D互连复合材料的表面形貌和形态。

更新日期:2020-03-16
down
wechat
bug