当前位置: X-MOL 学术arXiv.cs.LG › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Partial Multi-label Learning with Label and Feature Collaboration
arXiv - CS - Machine Learning Pub Date : 2020-03-17 , DOI: arxiv-2003.07578
Tingting Yu, Guoxian Yu, Jun Wang, Maozu Guo

Partial multi-label learning (PML) models the scenario where each training instance is annotated with a set of candidate labels, and only some of the labels are relevant. The PML problem is practical in real-world scenarios, as it is difficult and even impossible to obtain precisely labeled samples. Several PML solutions have been proposed to combat with the prone misled by the irrelevant labels concealed in the candidate labels, but they generally focus on the smoothness assumption in feature space or low-rank assumption in label space, while ignore the negative information between features and labels. Specifically, if two instances have largely overlapped candidate labels, irrespective of their feature similarity, their ground-truth labels should be similar; while if they are dissimilar in the feature and candidate label space, their ground-truth labels should be dissimilar with each other. To achieve a credible predictor on PML data, we propose a novel approach called PML-LFC (Partial Multi-label Learning with Label and Feature Collaboration). PML-LFC estimates the confidence values of relevant labels for each instance using the similarity from both the label and feature spaces, and trains the desired predictor with the estimated confidence values. PML-LFC achieves the predictor and the latent label matrix in a reciprocal reinforce manner by a unified model, and develops an alternative optimization procedure to optimize them. Extensive empirical study on both synthetic and real-world datasets demonstrates the superiority of PML-LFC.

中文翻译:

带有标签和特征协作的部分多标签学习

部分多标签学习 (PML) 对每个训练实例都用一组候选标签进行注释的场景进行建模,并且只有一些标签是相关的。PML 问题在现实世界中很实用,因为很难甚至不可能获得精确标记的样本。已经提出了几种PML解决方案来对抗隐藏在候选标签中的不相关标签容易误导,但它们通常侧重于特征空间中的平滑假设或标签空间中的低秩假设,而忽略了特征和特征之间的负面信息标签。具体来说,如果两个实例的候选标签有很大的重叠,不管它们的特征相似度如何,它们的真实标签应该是相似的;而如果它们在特征和候选标签空间中不同,他们的真实标签应该彼此不同。为了实现对 PML 数据的可靠预测,我们提出了一种称为 PML-LFC(带有标签和特征协作的部分多标签学习)的新方法。PML-LFC 使用来自标签和特征空间的相似性为每个实例估计相关标签的置信度值,并用估计的置信度值训练所需的预测器。PML-LFC 通过统一模型以相互强化的方式实现预测器和潜在标签矩阵,并开发替代优化程序来优化它们。对合成数据集和真实数据集的大量实证研究证明了 PML-LFC 的优越性。我们提出了一种称为 PML-LFC(带有标签和特征协作的部分多标签学习)的新方法。PML-LFC 使用来自标签和特征空间的相似性为每个实例估计相关标签的置信度值,并用估计的置信度值训练所需的预测器。PML-LFC 通过统一模型以相互强化的方式实现预测器和潜在标签矩阵,并开发替代优化程序来优化它们。对合成数据集和真实数据集的大量实证研究证明了 PML-LFC 的优越性。我们提出了一种称为 PML-LFC(带有标签和特征协作的部分多标签学习)的新方法。PML-LFC 使用来自标签和特征空间的相似性为每个实例估计相关标签的置信度值,并用估计的置信度值训练所需的预测器。PML-LFC 通过统一模型以相互强化的方式实现预测器和潜在标签矩阵,并开发替代优化程序来优化它们。对合成数据集和真实数据集的大量实证研究证明了 PML-LFC 的优越性。并用估计的置信度值训练所需的预测器。PML-LFC 通过统一模型以相互强化的方式实现预测器和潜在标签矩阵,并开发替代优化程序来优化它们。对合成数据集和真实数据集的大量实证研究证明了 PML-LFC 的优越性。并用估计的置信度值训练所需的预测器。PML-LFC 通过统一模型以相互强化的方式实现预测器和潜在标签矩阵,并开发替代优化程序来优化它们。对合成数据集和真实数据集的大量实证研究证明了 PML-LFC 的优越性。
更新日期:2020-03-18
down
wechat
bug