当前位置: X-MOL 学术ChemPhysChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational Study on the Charge Transport and Optical Spectra of Anthracene Derivatives in Aggregates.
ChemPhysChem ( IF 2.9 ) Pub Date : 2020-04-07 , DOI: 10.1002/cphc.202000187
Yajing Sun 1 , Hua Geng 2 , Qian Peng 3 , Zhigang Shuai 4
Affiliation  

A recent experiment [Angew. Chem. Int. Ed. 2017, 56, 722–727] found that a (1 : 9) blend film of two anthracene derivatives, 2‐fluorenyl‐2‐anthracene (FlAnt) and 2‐anthryl‐2‐anthracence (2 A), exhibit both efficient white light emission and high hole mobility, thus promising for organic light‐emitting transistors (OLETs). Employing quantum chemistry at the polarizable continuum model (PCM) and the quantum mechanics/molecular mechanics (QM/MM) levels, we investigated the excited‐state structures, optical spectra, band structure and the carrier mobility for FlAnt and 2 A from solution to aggregate phases. We suggest using the ratio of intermolecular excitonic coupling J and intramolecular excited state relaxation energy E to judge the bathochromic shift in optical emission in aggregates. For FlAnt, ρ=J/E is calculated to be less than 0.17, a critical value we identified earlier, and the spectra in solution and aggregate phases present quite similar features (blue emission). However, ρ is ∼0.5 for 2 A systems, and the calculated emission in the aggregate phase exhibits a remarkable bathochromic shift. In addition, the 0–0 emission is strongly suppressed in the herringbone stacking. These observations justify the experimental findings that (i) 2 A is blue emissive in solution but yellow‐green in the aggregate phase, whereas FlAnt is always blue, and (ii) the blend of them show white emission. By using the “quantum nuclear tunneling” model we proposed earlier, we found the hole mobility for FlAnt and 2 A are 0.5 and 4.2 cm2 V−1 s−1, respectively, indicating both are good hole transport materials.

中文翻译:

聚集体中蒽衍生物的电荷传输和光谱的计算研究。

最近的实验[ Angew。化学 诠释 爱德2017年,56, 722-727]发现,(1:9)2个蒽衍生物,2-芴基-2-蒽(的掺合物膜FlAnt)和2-蒽基-2- anthracence(2甲),表现出既高效白色发光和高空穴迁移率,因此有望用于有机发光晶体管(OLET)。我们利用可极化连续体模型(PCM)和量子力学/分子力学(QM / MM)级别的量子化学,研究了FlAnt2 A从溶液到溶液的激发态结构,光谱,能带结构和载流子迁移率。聚集阶段。我们建议使用分子间激子偶联的比率J和分子内激发态弛豫能E来判断聚集体中光发射的红移。对于FlAnt,计算得出ρ = J / E小于0.17,这是我们之前确定的临界值,溶液相和聚集相中的光谱呈现出非常相似的特征(蓝色发射)。然而,对于2 A系统,ρ为〜0.5 ,并且在聚集相中计算的发射显示出显着的红移。另外,在人字形堆叠中强烈抑制了0-0发射。这些观察结果证明了实验发现(i)2 A在溶液中呈蓝色发射,但在聚集相中呈黄绿色,而FlAnt始终为蓝色,并且(ii)它们的混合物显示白色发射。通过使用我们之前提出的“量子核隧穿”模型,我们发现FlAnt2 A的空穴迁移率分别为0.5和4.2 cm 2  V -1  s -1,表明它们都是良好的空穴传输材料。
更新日期:2020-04-07
down
wechat
bug