当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The interdependence of microstructure, strength and fracture toughness in a novel β titanium alloy Ti–5Al–4Zr–8Mo–7V
Materials Science and Engineering: A ( IF 6.4 ) Pub Date : 2020-03-18 , DOI: 10.1016/j.msea.2020.139248
Wenguang Zhu , Jia Lei , Bin Su , Qiaoyan Sun

In order to study the correlation between microstructure, strength and fracture toughness (KIC) and optimize the strength-KIC combination, BASCA (β annealing slow cooling plus aging) and STA (α/β solution treatment plus aging) heat treatment followed by near β forging is conducted to obtain a variety of multiscale lamella structure and Bi-modal structure. The results show that multiscale lamella structure exhibits good strength-toughness combination. The fracture toughness is ∼52 MPa⋅m0.5 at the strength level of ∼1460 MPa. By decreasing the tensile strength to ∼1260 MPa, the fracture toughness increases to ∼64 MPa⋅m0.5. In both lamella structure and Bi-modal structure, fracture toughness increases with decreasing yield strength which is attributed to a lager plastic zone at crack tip of lower strength. A linear relationship between yield strength and KIC gives a good fit in multiscale lamella structure. This suggests that continuum property (e.g. strength and ductility) governs KIC in the same microstructure type. Comparing different microstructure type, multiscale lamella structure exhibited higher KIC than Bi-modal structure at similar strength level. This is mainly attributed to the effect of back stress during deformation. A lower α/β interphase stress (back stress) and homogeneous strain distribution are exhibited in lamella structure which retards the crack propagation and increases the KIC. Meanwhile, coarse α lamella in multiscale lamella structure promotes the crack deflection. This crack shielding decreases the effective stress intensity (Keff) at crack tip and increase fracture toughness accordingly. Our study indicates that forming multiscale lamella α phase by BASCA treatment is an effective approach to overcome the mutually exclusive properties of strength and fracture toughness in high strength β titanium alloys. Multiscale lamella structure improves KIC by both intrinsic toughening (a more homogeneous strain distribution) and extrinsic toughening (improved crack propagation resistance).



中文翻译:

新型β钛合金Ti–5Al–4Zr–8Mo–7V的组织,强度和断裂韧性的相互依赖性

为了研究微观结构,强度和断裂韧性(K IC)之间的关系并优化强度-K IC组合,先进行BASCA(β退火慢冷加时效)和STA(α/β固溶处理加时效)热处理,然后进行热处理进行近β锻造以获得各种多尺度的片状结构和双峰结构。结果表明,多尺度薄片结构表现出良好的强度-韧性组合。在〜1460MPa的强度水平下,断裂韧性为〜52MPa·m 0.5。通过将抗拉强度降低至〜1260 MPa,断裂韧性提高至〜64 MPa·m 0.5。在薄板结构和双峰结构中,断裂韧性都随着屈服强度的降低而增加,这归因于较低强度的裂纹尖端处的塑性区更大。屈服强度和K IC之间的线性关系非常适合多尺度薄片结构。这表明在相同的微观结构类型中,连续性(例如强度和延展性)决定着K IC。比较不同的微观结构类型,多尺度薄片结构表现出更高的K IC强度水平相似的双峰结构。这主要归因于变形期间的背应力效应。薄层结构表现出较低的α/β相间应力(背应力)和均匀的应变分布,从而阻碍了裂纹扩展并增加了K IC。同时,多尺度薄片结构中的粗α薄片会促进裂纹偏转。这种裂纹屏蔽降低了裂纹尖端的有效应力强度(K eff),并相应地提高了断裂韧性。我们的研究表明,通过BASCA处理形成多尺度薄片α相是克服高强度β钛合金强度和断裂韧性相互排斥的有效方法。多尺度薄片结构可改善K IC 通过固有的增韧(更均匀的应变分布)和外部的增韧(提高的抗裂纹扩展性)。

更新日期:2020-03-19
down
wechat
bug