当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Li2ZnTi3O8/C anode with high initial Coulombic efficiency, long cyclic life and outstanding rate properties enabled by fulvic acid
Carbon ( IF 10.9 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.carbon.2020.03.029
Jia-Li Qin , Hui-Ling Zhu , Ning Lun , Yong-Xin Qi , Yu-Jun Bai

Abstract Industrialized anode materials for Li-ion batteries (LIBs) require high initial Coulombic efficiency (ICE), long cyclic life and outstanding rate properties. Herein, fulvic acid (FA) with the elements of C, H, O, N and S was adopted as the carbon precursor to mix with Li2ZnTi3O8 (LZTO) followed by carbonizing to optimize the electrochemical performance of the LZTO anode. At a weight ratio of 0.28 for FA/LZTO, the product carbonized at 800 °C reveals high ICE of 88.0%, remarkable rate capabilities (lithiation/delithiation capacities of 195.4/191 and 143.5/143.5 mAh g−1 at 0.1 and 1.6 A g−1, respectively). After undergoing 1000 cycles at 0.5 A g−1, the retained reversible capacity is 215.3 mAh g−1. The excellent performance suitable for industrial power LIBs associates with the N and S co-doped discontinuous carbon coating layers, small carbon bumps and membranes on the LZTO particle surface. The carbon material facilitates electron transfer and the exposed LZTO surface maintains the good Li-ion migration of LZTO. Particularly, the NO3− radicals yielded favor to boost the Li-ion diffusion by transforming into the solid state electrolytes of Li3N and LiNxOy in the lithiation process.

中文翻译:

富里酸使Li2ZnTi3O8/C负极具有高初始库仑效率、长循环寿命和出色的倍率特性

摘要 锂离子电池(LIBs)的工业化负极材料需要高初始库仑效率(ICE)、长循环寿命和出色的倍率特性。在此,采用具有 C、H、O、N 和 S 元素的富里酸 (FA) 作为碳前驱体与 Li2ZnTi3O8 (LZTO) 混合,然后碳化以优化 LZTO 阳极的电化学性能。在 FA/LZTO 的重量比为 0.28 时,在 800 °C 下碳化的产物显示出 88.0% 的高 ICE,显着的倍率性能(在 0.1 和 1.6 A 时的锂化/脱锂容量为 195.4/191 和 143.5/143.5 mAh g-1) g-1,分别)。在 0.5 A g-1 下经历 1000 次循环后,保留的可逆容量为 215.3 mAh g-1。适用于工业电源LIB的优异性能与N和S共掺杂的不连续碳涂层相关,LZTO 颗粒表面上的小碳块和膜。碳材料促进电子转移,暴露的 LZTO 表面保持 LZTO 良好的锂离子迁移。特别是,NO3- 自由基通过在锂化过程中转化为 Li3N 和 LiNxOy 的固态电解质,有利于促进锂离子扩散。
更新日期:2020-08-01
down
wechat
bug