当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Autogenous Production and Stabilization of Highly Loaded Sub-Nanometric Particles within Multishell Hollow Metal-Organic Frameworks and Their Utilization for High Performance in Li-O2 Batteries.
Advanced Science ( IF 15.1 ) Pub Date : 2020-03-16 , DOI: 10.1002/advs.202000283
Won Ho Choi 1 , Byeong Cheul Moon 1 , Dong Gyu Park 1 , Jae Won Choi 1 , Keon-Han Kim 1 , Jae-Sun Shin 2 , Min Gyu Kim 3 , Kyung Min Choi 4 , Jeung Ku Kang 1, 5
Affiliation  

Sub-nanometric particles (SNPs) of atomic cluster sizes have shown great promise in many fields such as full atom-to-atom utilization, but their precise production and stabilization at high mass loadings remain a great challenge. As a solution to overcome this challenge, a strategy allowing synthesis and preservation of SNPs at high mass loadings within multishell hollow metal-organic frameworks (MOFs) is demonstrated. First, alternating water-decomposable and water-stable MOFs are stacked in succession to build multilayer MOFs. Next, using controlled hydrogen bonding affinity, isolated water molecules are selectively sieved through the hydrophobic nanocages of water-stable MOFs and transferred one by one to water-decomposable MOFs. The transmission of water molecules via controlled hydrogen bonding affinity through the water-stable MOF layers is a key step to realize SNPs from various types of alternating water-decomposable and water-stable layers. This process transforms multilayer MOFs into SNP-embedded multishell hollow MOFs. Additionally, the multishell stabilizes SNPs by π-backbonding allowing high conductivity to be achieved via the hopping mechanism, and hollow interspaces minimize transport resistance. These features, as demonstrated using SNP-embedded multishell hollow MOFs with up to five shells, lead to high electrochemical performances including high volumetric capacities and low overpotentials in Li-O2 batteries.

中文翻译:

多壳空心金属有机骨架中高负载亚纳米颗粒的自生和稳定化及其在Li-O2电池中的高性能利用。

原子团簇大小的亚纳米粒子(SNP)在许多领域中都显示出了巨大的希望,例如完全利用原子间的原子,但是在高质量负载下如何精确生产和稳定仍然是巨大的挑战。作为克服这一挑战的解决方案,展示了一种策略,该策略允许在多壳中空金属有机框架(MOF)中以高质量负载合成和保存SNP。首先,交替堆叠可分解水和稳定水的MOF,以构建多层MOF。接下来,使用可控的氢键亲和力,将分离出的水分子通过水稳定型MOF的疏水性纳米笼进行选择性筛分,然后逐一转移到可水分解的MOF中。通过受控的氢键亲和力将水分子传输通过水稳定的MOF层是从各种类型的交替的水可分解层和水稳定层实现SNP的关键步骤。此过程将多层MOF转换为嵌入SNP的多壳空心MOF。另外,多壳结构通过π反向键合稳定SNP,从而允许通过跳变机制实现高电导率,并且中空间隙将传输阻力降至最低。如使用具有多达五个壳的SNP嵌入式多壳空心MOF所展示的,这些特性导致了高电化学性能,包括高容量容量和Li-O2电池中的低超电势。此过程将多层MOF转换为嵌入SNP的多壳空心MOF。另外,多壳结构通过π反向键合稳定SNP,从而允许通过跳变机制实现高电导率,并且中空间隙将传输阻力降至最低。如使用具有多达五个壳的SNP嵌入式多壳空心MOF所展示的,这些特性导致了高电化学性能,包括高容量容量和Li-O2电池中的低超电势。此过程将多层MOF转换为嵌入SNP的多壳空心MOF。另外,多壳结构通过π反向键合稳定SNP,从而允许通过跳变机制实现高电导率,并且中空间隙将传输阻力降至最低。如使用具有多达五个壳的SNP嵌入式多壳空心MOF所展示的,这些特性导致了高电化学性能,包括高容量容量和Li-O2电池中的低超电势。
更新日期:2020-03-16
down
wechat
bug