当前位置: X-MOL 学术J. Mater. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Prediction of high carrier mobility for a novel two-dimensional semiconductor of BC6N: first principles calculations
Journal of Materials Chemistry C ( IF 6.4 ) Pub Date : 2020-03-13 , DOI: 10.1039/d0tc00549e
Li-Bin Shi 1, 2, 3, 4 , Mei Yang 1, 2, 3, 4 , Shuo Cao 1, 2, 3, 4 , Qi You 1, 2, 3, 4 , Ya-Jing Zhang 4, 5, 6, 7 , Meng Qi 1, 2, 3, 4 , Kai-Cheng Zhang 1, 2, 3, 4 , Ping Qian 4, 5, 6, 7
Affiliation  

First principles calculations are performed to predict phonon-limited carrier mobility for a novel graphene-like semiconductor with BC6N stoichiometry. First, the electron–phonon interaction matrix element (EPIME) from the standard Wannier and polar Wannier interpolation schemes is used to investigate mobility. After considering the polarization, carrier mobility is greatly reduced, so polar optical phonon (POP) scattering plays an important role. At 300 K, the electron mobility for the most stable BC6N–B is predicted to be μx = 4.51 × 102–8.37 × 102 and μy = 8.35 × 102–1.22 × 103 cm2 V−1 s−1, while the hole mobility is estimated to be μx = 4.79 × 102–8.65 × 102 and μy = 9.19 × 102–1.28 × 103 cm2 V−1 s−1. Then, the longitudinal acoustic phonon deformation potential theory (LAP-DPT) is adopted to calculate the mobility, which leads to an overestimation for carrier mobility in polar semiconductors. Furthermore, the semiempirical model based on the POP scattering is also used to investigate the mobility. It is confirmed that the intrinsic mobility for BC6N is mainly determined by the Fröhlich interaction. The investigation provides a deep understanding of carrier transport properties. It is revealed that B and N co-doped graphene may become a promising material for application in nanoelectronic devices due to the excellent mechanical behavior, moderate direct band gap and high carrier mobility.

中文翻译:

新型BC6N二维半导体的高载流子迁移率预测:第一性原理计算

进行第一原理计算以预测具有BC 6 N化学计量比的新型石墨烯状半导体的声子极限载流子迁移率。首先,使用标准的Wannier和极性Wannier插值方案的电子-声子相互作用矩阵元素(EPIME)来研究迁移率。考虑极化之后,载流子迁移率大大降低,因此极性光子(POP)散射起着重要作用。在300K,在大多数BC稳定的电子迁移率6的N-乙被预测为μ X = 4.51×10 2 -8.37×10 2μ ÿ = 8.35×10 2 -1.22×10 3厘米2V -1小号-1,而空穴迁移率被估计为μ X = 4.79×10 2 -8.65×10 2μ ÿ = 9.19×10 2 -1.28×10 3厘米2 V -1小号-1。然后,采用纵向声子声子形变势理论(LAP-DPT)来计算迁移率,这导致对极性半导体中载流子迁移率的高估。此外,基于POP散射的半经验模型也用于研究迁移率。证实了BC 6的固有迁移率N主要由Fröhlich相互作用确定。该调查提供了对载体运输特性的深刻理解。据揭示,由于优异的机械性能,适度的直接带隙和高的载流子迁移率,B和N共掺杂的石墨烯可能成为用于纳米电子器件的有前途的材料。
更新日期:2020-03-13
down
wechat
bug