当前位置: X-MOL 学术IEEE Internet Things J. › 论文详情
Toward Optimal Resource Scheduling for Internet of Things Under Imperfect CSI
IEEE Internet of Things Journal ( IF 9.515 ) Pub Date : 2019-11-11 , DOI: 10.1109/jiot.2019.2952721
Libo Jiao; Yulei Wu; Jiaqing Dong; Zexun Jiang

The Internet of Things (IoT) increases the number of connected devices and supports the ever-growing complexity of applications. Owing to the constrained physical size, the IoT devices can significantly enhance the computational capacity by offloading computation-intensive tasks to the resource-rich edge servers deployed at the base station (BS) via wireless networks. However, how to achieve optimal resource scheduling remains a challenge due to stochastic task arrivals, time-varying wireless channels, and imperfect estimation of channel state information (CSI). In this article, by virtue of the Lyapunov optimization technique, we propose the toward optimal resource scheduling algorithm under imperfect CSI (TORS) to optimize resource scheduling in an IoT environment. A convex transmit power and subchannel allocation problem in TORS is formulated. This problem is then solved via the Lagrangian dual decomposition method. We derive analytical bounds for the time-averaged system throughput and queue backlog. We show that TORS can arbitrarily approach the optimal system throughput by simply tuning an introduced control parameter $\beta $ without prior knowledge of stochastic task arrivals and the CSI of wireless channels. Extensive simulation results confirm the theoretical analysis on the performance of TORS.
更新日期:2020-03-16

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
舒伟
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug