当前位置: X-MOL 学术IEEE Internet Things J. › 论文详情
Multi-User Offloading for Edge Computing Networks: A Dependency-Aware and Latency-Optimal Approach
IEEE Internet of Things Journal ( IF 9.515 ) Pub Date : 2019-09-24 , DOI: 10.1109/jiot.2019.2943373
Chang Shu; Zhiwei Zhao; Yunpeng Han; Geyong Min; Hancong Duan

Driven by the tremendous application demands, the Internet of Things (IoT) systems are expected to fulfill computation-intensive and latency-sensitive sensing and computational tasks, which pose a significant challenge for the IoT devices with limited computational ability and battery capacity. To address this problem, edge computing is a promising architecture where the IoT devices can offload their tasks to the edge servers. Current works on task offloading often overlook the unique task topologies and schedules from the IoT devices, leading to degraded performance and underutilization of the edge resources. In this article, we investigate the problem of fine-grained task offloading in edge computing for low-power IoT systems. By explicitly considering: 1) the topology/schedules of the IoT tasks; 2) the heterogeneous resources on edge servers; and 3) the wireless interference in the multiaccess edge networks, we propose a lightweight yet efficient offloading scheme for multiuser edge systems, which offloads the most appropriate IoT tasks/subtasks to edge servers such that the expected execution time is minimized. To support the multiuser offloading, we also propose a distributed consensus algorithm for low-power IoT devices. We conduct extensive simulation experiments and the results show that the proposed offloading algorithms can effectively reduce the end-to-end task execution time and improve the resource utilization of the edge servers.
更新日期:2020-03-16

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug