当前位置: X-MOL 学术IEEE Internet Things J. › 论文详情
Sustainable Vehicle-Assisted Edge Computing for Big Data Migration in Smart Cities
IEEE Internet of Things Journal ( IF 9.515 ) Pub Date : 2019-12-03 , DOI: 10.1109/jiot.2019.2957127
Maria Kanwal; Asad Waqar Malik; Anis Ur Rahman; Imran Mahmood; Muhammad Shahzad

Smart cities are based on connected devices generating large quantities of data every instant. These data can be stored at a nearby edge location for initial processing but later sending the data to the backend data centers for storage and further analysis consumes considerable network bandwidth. In this article, we propose a large-scale data migration framework using vehicles. The framework uses a neural network to identify suitable vehicles as data mules, ones moving toward the data destination, potentially reducing the load from backend networks in terms of bandwidth usage and overall energy consumption. We compare the framework with data transfers using the traditional Internet and an approach without machine intelligence. The proposed framework performs well in terms of data loss, transfer time, energy, and CO 2 emissions. From experiments, we demonstrate that the approach achieves a 67% success rate with data transfers $193\times $ faster than the average Internet bandwidth of 21.28 Mb/s. Moreover, the resulting CO 2 emissions for 30-TB data transfers stood at 6.403 kg, which is significantly lower compared to 1172.8 kg for the Internet.
更新日期:2020-03-16

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug