当前位置: X-MOL 学术IEEE Internet Things J. › 论文详情
A B-Spline Method With AIS Optimization for 2-D IoT-Based Overpressure Reconstruction
IEEE Internet of Things Journal ( IF 9.515 ) Pub Date : 2019-12-19 , DOI: 10.1109/jiot.2019.2960827
Shang Gao; Guiyun Tian; Xuewu Dai; Xuefeng Jiang; Deren Kong; Yan Zong; Qiuji Yi

In blast wave monitoring, a traditional travel time tomography method is encountered with local minimum travel time and low coverage density of rays. In this article, a novel B-spline fitting method with the knot-optimization artificial immune system (AIS) is proposed for 2-D overpressure reconstruction. It possesses the advantages of handling point sets of large sizes and adjusts the knot vector flexibly. Based on the overpressure value in the explosion from the travel time tomography method, the proposed method combining the advantages of B-splines and knot point optimization AIS is able to achieve the optimal sensor distribution and raise the reconstruction precision. The detailed experimental results about the comparison of linear fitting interpolation, cubic fitting interpolation, natural neighbor fitting interpolation, v4 fitting interpolation, Delaunay triangulation fitting, and B-spline method are also given. Furthermore, for the knot optimization issue in B-spline, the proposed adaptive fitting method with knot-optimization AIS has a smaller root-mean-square (RMS) error with eight knot nodes in comparison with the classic B-spline fitting method. This article is conducted to provide new insights to reconstructing 2-D Internet-of-Things-based (IoT-based) overpressure in blast wave monitoring more precisely under limited sensor deployment and further give a new approach to overpressure reconstruction scenarios.
更新日期:2020-03-16

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug