当前位置: X-MOL 学术Environ. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Distinct functional microbial communities mediating the heterotrophic denitrification in response to the excessive Fe(II) stress in groundwater under wheat-rice stone and rock phosphate amendments.
Environmental Research ( IF 8.3 ) Pub Date : 2020-03-13 , DOI: 10.1016/j.envres.2020.109391
Ying Liu 1 , Yizhi Sheng 2 , Chuanping Feng 3 , Nan Chen 3 , Tong Liu 3
Affiliation  

Denitrifying microbial community can be utilized for eliminating nitrate and Fe(II) combined contamination in groundwater, while excessive amount of Fe(II) limit the process. Natural mineral can be additional substrate for the microbial growth, whereas how it influences the microbial community that mediating the denitrification coupling with Fe(II) oxidation and balancing inhibition of excessive Fe(II) on denitrification remain unclear. In the present study, we conducted a series of microcosm experiments to explore the denitrification and Fe(II) oxidation kinetic, and used RNA-based qPCR and DNA-based high-throughput sequencing to elucidate microbial diversity, co-occurrence and metabolic profiles amended by wheat-rice stone and rock phosphate. The results showed that both minerals could extensively improve and double the denitrification rates (2.0 ± 0.03 to 2.12 ± 0.13 times), decrease the nitrite accumulation and trigger the high resistance of the denitrifiers from the stress of Fe(II), whereas only wheat-rice stone with higher surface area increased the oxidation of Fe(II) (<10%). The addition of both minerals enhanced the microbial alpha-diversity, shaped the beta-diversity and co-occurrence network, and recovered the transcription of nitrate and nitrite reductase (Nar, Nap, NirS, NirK) from the Fe(II) inhibition. Accordingly, heterotroph Methyloversatilis sp., Methylotenra sp. might contribute to the denitrification under wheat-rice stone amendment, Denitratisoma sp. contribute to the denitrification for rock phosphate, and Fe oxidation was partially catalyzed by Dechloromonas sp. or abiotically by the nitrite/nitrous oxide. These findings would be helpful for better understanding the bioremediation of nitrate and Fe contaminated groundwater.

中文翻译:

不同的功能性微生物群落在小麦-水稻石和磷酸盐磷酸盐改良剂的作用下介导了地下水中过量的Fe(II)胁迫而介导了异养反硝化作用。

反硝化微生物群落可用于消除地下水中的硝酸盐和Fe(II)合并污染,而过量的Fe(II)会限制该过程。天然矿物质可能是微生物生长的附加底物,但是如何影响微生物群落,介导反硝化与Fe(II)的氧化耦合以及平衡过量的Fe(II)对反硝化的抑制作用仍不清楚。在本研究中,我们进行了一系列微观实验,以探索反硝化作用和Fe(II)氧化动力学,并使用基于RNA的qPCR和基于DNA的高通量测序来阐明微生物多样性,共现和代谢谱由麦饭石和磷酸盐岩制成。结果表明,两种矿物质都能大大提高反硝化率并将其翻番(2。(0±0.03至2.12±0.13倍),减少亚硝酸盐积累并从Fe(II)的应力触发反硝化剂的高电阻,而只有表面积较大的小麦-米石才增加Fe(II)的氧化( <10%)。两种矿物质的添加均增强了微生物的α多样性,塑造了β多样性和共现网络,并从Fe(II)抑制作用中恢复了硝酸盐和亚硝酸盐还原酶(Nar,Nap,NirS,NirK)的转录。因此,异养菌甲基过饱和菌属物种,甲基异位菌属物种。可能在小麦-水稻石改良剂Denitratisoma sp。的反硝化中起作用。有助于磷矿石的反硝化,铁的氧化部分被Dechloromonas sp。催化。或通过亚硝酸盐/一氧化二氮非生物方式。
更新日期:2020-03-16
down
wechat
bug