当前位置: X-MOL 学术Sol. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flow and heat transfer simulation in porous volumetric solar receivers by non-orthogonal multiple-relaxation time lattice Boltzmann method
Solar Energy ( IF 6.7 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.solener.2020.03.026
Ying Zhang , Yichen Huang , Meng Xu , Jie Lei , Zhihao Li , Yuan Tian

Abstract Flow behavior and heat transfer (FBHT) process within porous volumetric solar receivers (VSR) were studied numerically by the non-orthogonal Multiple-Relaxation Time Lattice Boltzmann Method (NO-MRT-LBM). Three types of porous structures within VSR were distributed and studied. A non-uniform Gaussian heat influx distribution was adopted to approximate the actual conditions. The effects of pore structure (types 1-3) and heat flux distribution (w) on flow behavior and heat transfer process were studied. It was found that the effect of heat flux distribution on the internal heat transfer process of VSR with different porous structure types was mainly determined by the inlet distribution of solid particles. In type 1 and type 2, the instantaneous temperature growth rate of solid particles increased with decreasing w at the inlet area of the model, thus the maximum temperature, the average temperature of the solid particles within the receiver and the air at the outlet increased rapidly. The average temperature of solid particles and air at the outlet in type 3 both increased with the increase of w. Compared with type 2 and type 3, type 1 showed the best effect of heat transfer when heat flux distribution tended to be uneven, which, however, needs to be reduced to avoid the local temperature becoming excessively large. When heat flux distribution tended to be uniform, type 3 showed better heat transfer performance where any excessive local temperature was eliminated.

中文翻译:

非正交多重弛豫时间格子 Boltzmann 方法在多孔体积太阳能接收器中的流动和传热模拟

摘要 采用非正交多重弛豫时间格子玻尔兹曼方法(NO-MRT-LBM)对多孔体积太阳能接收器(VSR)内的流动行为和传热(FBHT)过程进行了数值研究。分布和研究了 VSR 内的三种多孔结构。采用非均匀高斯热流入分布来近似实际情况。研究了孔隙结构(类型 1-3)和热通量分布 (w) 对流动行为和传热过程的影响。发现热流分布对不同多孔结构类型VSR内部传热过程的影响主要取决于固体颗粒的入口分布。在类型 1 和类型 2 中,在模型入口区域,固体颗粒的瞬时温度增长率随着w的减小而增加,因此接收器内固体颗粒的最高温度、平均温度和出口处的空气温度迅速升高。3型出口处固体颗粒和空气的平均温度均随着w的增加而升高。与类型 2 和类型 3 相比,类型 1 在热通量分布趋于不均匀时表现出最佳的传热效果,但需要降低以防止局部温度过大。当热通量分布趋于均匀时,类型 3 显示出更好的传热性能,其中消除了任何过度的局部温度。接收器内固体颗粒和出口空气的平均温度迅速升高。3型出口处固体颗粒和空气的平均温度均随着w的增加而升高。与类型 2 和类型 3 相比,类型 1 在热通量分布趋于不均匀时表现出最佳的传热效果,但需要降低以防止局部温度过大。当热通量分布趋于均匀时,类型 3 显示出更好的传热性能,其中消除了任何过度的局部温度。接收器内固体颗粒和出口空气的平均温度迅速升高。3型出口处固体颗粒和空气的平均温度均随着w的增加而升高。与类型 2 和类型 3 相比,类型 1 在热通量分布趋于不均匀时表现出最佳的传热效果,但需要降低以防止局部温度过大。当热通量分布趋于均匀时,类型 3 显示出更好的传热性能,其中消除了任何过度的局部温度。当热流分布趋于不均匀时,类型1表现出最好的传热效果,但需要降低,以避免局部温度过大。当热通量分布趋于均匀时,类型 3 显示出更好的传热性能,其中消除了任何过度的局部温度。当热流分布趋于不均匀时,类型1表现出最好的传热效果,但需要降低,以避免局部温度过大。当热通量分布趋于均匀时,类型 3 显示出更好的传热性能,其中消除了任何过度的局部温度。
更新日期:2020-05-01
down
wechat
bug