当前位置: X-MOL 学术Joule › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Probing Semiconductor Properties with Optical Scanning Tunneling Microscopy
Joule ( IF 39.8 ) Pub Date : 2020-03-13 , DOI: 10.1016/j.joule.2020.02.003
Sarah Wieghold , Lea Nienhaus

Studying nanoscale photophysical processes is mandatory to fully understand the complex optoelectronic properties in semiconductor materials used in photovoltaics and light emitting diodes. In this perspective, we target specific scanning probe techniques, which combine scanning tunneling microscopy (STM) with optical methods to unravel the localized optoelectronic properties of semiconductors under realistic electric and optical fields, down to the nanoscale. Combining optical spectroscopy with STM yields a powerful platform that allows for simultaneous imaging of the surface morphology and the electronic structure down to the atomic level, a resolution that is otherwise not accessible due to the optical diffraction limit. Incident wavelengths spanning the electromagnetic spectrum from the terahertz region to X-rays have been coupled into the STM tip-sample junction to investigate the nanoscale properties of semiconductor materials, whereas the reverse process of luminescence can give insight on local recombination processes. Imagine the potential of a tool capable of detecting both localized absorption and spontaneous and stimulated emission processes of semiconductor materials at the nanoscale. The role of every atom, defect, or electronic interaction could be disentangled, tailored, or harnessed to its maximum capacity.



中文翻译:

用光学扫描隧道显微镜探测半导体性能

必须全面研究纳米级的光物理过程,才能充分了解光伏和发光二极管中使用的半导体材料的复杂光电特性。从这个角度出发,我们将目标对准特定的扫描探针技术,该技术将扫描隧道显微镜(STM)与光学方法相结合,以揭示实际电场和光场下直至纳米级的半导体局部光电特性。将光谱技术与STM相结合可提供一个强大的平台,该平台可同时对表面形态和电子结构进行成像,直至达到原子级,而该分辨率由于光学衍射极限而无法获得。从太赫兹区域到X射线的电磁波的入射波长已被耦合到STM尖端样品结中,以研究半导体材料的纳米级特性,而发光的反向过程可以提供有关局部重组过程的见识。想象一下一种能够检测纳米级半导体材料的局部吸收以及自发和受激发射过程的工具的潜力。每个原子,缺陷或电子相互作用的作用都可以被解开,调整或利用,以发挥其最大能力。想象一下一种能够检测纳米级半导体材料的局部吸收以及自发和受激发射过程的工具的潜力。每个原子,缺陷或电子相互作用的作用都可以被解开,定制或利用,以发挥最大作用。想象一下一种能够检测纳米级半导体材料的局部吸收以及自发和受激发射过程的工具的潜力。每个原子,缺陷或电子相互作用的作用都可以被解开,定制或利用,以发挥最大作用。

更新日期:2020-03-13
down
wechat
bug