当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Theoretical and experimental investigations of mesoporous C3N5/MoS2 hybrid for lithium and sodium ion batteries
Nano Energy ( IF 17.6 ) Pub Date : 2020-03-14 , DOI: 10.1016/j.nanoen.2020.104702
Sungho Kim , Marlies Hankel , Wangsoo Cha , Gurwinder Singh , Jang Mee Lee , In Young Kim , Ajayan Vinu

The electrochemical properties of mesoporous C3N5 with a triazole-based C−N framework coupled with MoS2 as hybrid electrode materials for lithium and sodium ion batteries are investigated. The density functional theory (DFT) calculations suggest that the reversible adsorption of the lithium and sodium ions follows the order C3N5/MoS2 hybrid > C3N5 > g-C3N4. Bader charge analysis shows that the charge transferred from lithium and sodium ions is more distributed across the hybrid material as compared to the pure C3N5. It is experimentally found that the optimized mesoporous C3N5/MoS2 hybrid shows a 3.86 and 10.80 times increase in reversible capacities as compared to mesoporous g-C3N4 for lithium and sodium ion batteries, respectively. Based on the comparative mechanism studies, the limited intercalation kinetics and surface-derived ion storage hinder the application of the mesoporous g-C3N4 in lithium and sodium ion batteries, respectively. The synthesized mesoporous C3N5/MoS2 hybrids with mesopore channels, expanded gallery height and desired ion adsorption energies provide insights to improve the electrode performances of carbon nitrides-based materials for lithium and sodium ion batteries.



中文翻译:

锂和钠离子电池中孔C 3 N 5 / MoS 2杂化物的理论和实验研究

研究了以三唑为基的CN框架与MoS 2耦合作为锂和钠离子电池的混合电极材料的介孔C 3 N 5的电化学性能。密度泛函理论(DFT)计算表明,锂和钠离子的可逆吸附遵循C 3 N 5 / MoS 2杂化物> C 3 N 5 > gC 3 N 4的顺序。较差的电荷分析表明,与纯C 3 N 5相比,从锂离子和钠离子转移来的电荷在杂化材料中分布更广。实验发现,与用于锂离子和钠离子电池的中孔gC 3 N 4相比,优化的中孔C 3 N 5 / MoS 2杂化物的可逆容量分别提高了3.86和10.80倍。基于比较机理的研究,有限的嵌入动力学和表面衍生的离子存储阻碍了介孔gC 3 N 4分别在锂和钠离子电池中的应用。合成介孔C 3 N 5 / MoS 2 具有中孔通道的混合动力,扩大的通道高度和所需的离子吸附能,为改善锂和钠离子电池氮化碳基材料的电极性能提供了见识。

更新日期:2020-03-16
down
wechat
bug