当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tesla-Scale Terahertz Magnetic Impulses
Physical Review X ( IF 12.5 ) Pub Date : 2020-03-13 , DOI: 10.1103/physrevx.10.011063
Shawn Sederberg , Fanqi Kong , Paul B. Corkum

Measuring the magnetic response of matter relies acutely on the degree to which a magnetic field source’s amplitude, spatial, and temporal character can be tailored. Magnetic fields are inseparable from light-matter interaction, yet due to the dominance of electric-field-induced effects in many systems, laser pulses have heretofore provided comparatively limited insight into the high-frequency magnetic response of matter. Conductors or superconductors arranged in a solenoidal configuration embody the state-of-the-art apparatus for generating spatially isolated magnetic fields, but the reliance on electrical circuitry limits the field amplitude, pulse brevity, and absolute timing of the generated fields. We transfer the concept of solenoidal currents commonly leveraged in electromagnets to photo-ionized electrons driven by moderately intense vector laser beams, in a scheme that does not require the laser mode to carry orbital angular momentum. We predict that this all-optical approach will enable magnetic fields exceeding 8 Tesla to be turned on within 50 femtoseconds using moderate laser intensities, an unprecedented combination of parameters that will open the possibility for ultrafast metrological techniques to be combined with intense, spatially isolated, magnetic fields.

中文翻译:

特斯拉规模太赫兹电磁脉冲

测量物质的磁响应强烈依赖于可以定制磁场源的幅度,空间和时间特征的程度。磁场与光的相互作用是分不开的,但是由于在许多系统中电场感应效应的优势,迄今为止,激光脉冲对物质的高频磁响应的了解相对有限。以螺线管配置布置的导体或超导体体现了用于产生空间隔离磁场的最新设备,但是对电路的依赖限制了磁场幅度,脉冲简洁性和所产生磁场的绝对定时。在不需要激光模式携带轨道角动量的方案中,我们将电磁体中通常利用的螺线管电流的概念转换为由中等强度的矢量激光束驱动的光电离电子。我们预计,这种全光学方法将使中等强度的激光强度能够在50飞秒内打开超过8特斯拉的磁场,这是前所未有的参数组合,这为超快计量技术与强烈的空间隔离技术结合提供了可能性,磁场。
更新日期:2020-03-13
down
wechat
bug