当前位置: X-MOL 学术Food Hydrocoll. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Jetting-based 3D Printing of Edible Materials
Food Hydrocolloids ( IF 10.7 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.foodhyd.2020.105857
Saumil Vadodaria , Thomas Mills

Abstract 3D printing or additive manufacturing is a fabrication technique gaining considerable interest across many disciplines owing to its dimensional precision and ability to produce novel geometrical shapes. Jetting-based 3D deposition is an important subset of 3D printing as it allows rather small units of deposition (i.e. droplets). Use of this technique for edible materials is relatively limited due to inability of piezoelectric inkjet printing to print inks with viscosity >0.03 Pa s. As a result, the technique is sometimes referred to as 2D food printing. The present review summarises reported studies on jetting-based printing of edible formulations. It also discusses various approaches which could result in further progress of this field of study. They include: (i) advancements in printing techniques such as thermally, pneumatically and electrostatically aided deposition and (ii) innovative ink formulations in which supramolecular interactions, e.g. hydrophobic and electrostatic associations dominate the microstructure of the printed object. With an optimal combination of these two, novel microstructures can be produced which may find their applications beyond food, into pharmaceuticals/nutraceuticals. Where relevant, non-edible formulations have been discussed which have the underlying microstructural principles that can be translated to edible formulations.

中文翻译:

基于喷射的可食用材料 3D 打印

摘要 3D 打印或增材制造是一种制造技术,由于其尺寸精度和产生新颖几何形状的能力,在许多学科中引起了极大的兴趣。基于喷射的 3D 沉积是 3D 打印的一个重要子集,因为它允许相当小的沉积单元(即液滴)。由于压电喷墨打印无法打印粘度 >0.03 Pa s 的墨水,因此将该技术用于可食用材料的使用相对有限。因此,该技术有时被称为 2D 食品打印。本综述总结了基于喷射打印可食用配方的研究报告。它还讨论了可能导致该研究领域进一步发展的各种方法。它们包括:(i) 印刷技术的进步,例如热印刷、气动和静电辅助沉积和 (ii) 创新油墨配方,其中超分子相互作用,例如疏水和静电缔合主导了印刷物体的微观结构。通过这两者的最佳组合,可以生产出新的微结构,这些微结构可能会应用于食品以外的药物/营养保健品。讨论了相关的非食用配方,这些配方具有可转化为可食用配方的基本微观结构原理。可以生产出新的微结构,这些微结构可能会应用于食品以外的药物/营养品。讨论了相关的非食用配方,这些配方具有可转化为可食用配方的基本微观结构原理。可以生产出新的微结构,这些微结构可能会应用于食品以外的药物/营养品。讨论了相关的非食用配方,这些配方具有可转化为可食用配方的基本微观结构原理。
更新日期:2020-09-01
down
wechat
bug