当前位置: X-MOL 学术Fuel › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Solvent-assisted water pressure cycling (SA-WPC) process in a thin heavy oil reservoir
Fuel ( IF 7.4 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.fuel.2020.117195
Olusegun Ojumoola , Hongze Ma , Yongan Gu

Abstract In this paper, solvent-assisted water pressure cycling (SA-WPC) was developed as a new and effective enhanced heavy oil recovery process. Two respective series of WPC and SA-WPC tests were conducted by using a rectangular sandpacked physical model with a two-well configuration and a height-to-length ratio of 1:20 to represent a thin heavy oil reservoir. Three WPC tests were initiated after the primary production pressure declined from Pi = 3.0 MPa to Pf = 2.0, 1.0, and 0.2 MPa, respectively. Moreover, three C3H8-SA-WPC tests and one CO2-SA-WPC test were commenced after the final primary production pressure of Pf = 0.2 MPa was reached. It was found that the three WPC tests had the total heavy oil recovery factors (RFs) of 23.0%, 29.4%, and 22.0%, respectively. In comparison, the four SA-WPC tests had the total heavy oil RFs of 62.0% for C3H8-SA-WPC with the pressure depletion step size of ΔPEOR = 0.1 MPa, 68.4% for C3H8-SA-WPC at ΔPEOR = 0.5 MPa, 42.3% for C3H8-SA-WPC at ΔPEOR = 1.0 MPa, and 29.2% for CO2-SA-WPC at ΔPEOR = 0.5 MPa, respectively. Overall, SA-WPC performed much better than WPC because of effective solvent dissolution to reduce the heavy oil viscosity as well as combined enhanced oil recovery (EOR) and improved oil recovery (IOR) mechanisms. The experimental data showed that C3H8 was a far more effective solvent than CO2 when the same solvent injection pressure was used. It was also found that the intermediate pressure depletion step size of ΔPEOR = 0.5 MPa resulted in the highest heavy oil RF among the three C3H8-SA-WPC tests.

中文翻译:

稀稠油油藏溶剂辅助水压循环(SA-WPC)工艺

摘要 在本文中,溶剂辅助水压循环(SA-WPC)被开发为一种新的、有效的提高稠油采收率的工艺。WPC 和SA-WPC 两个系列试验分别采用矩形填砂物理模型,双井配置,高长比为1:20,代表薄稠油油藏。在初级生产压力从 Pi = 3.0 MPa 分别下降到 Pf = 2.0、1.0 和 0.2 MPa 后,开始了三个 WPC 测试。此外,在达到最终初级生产压力 Pf = 0.2 MPa 后,开始了 3 次 C3H8-SA-WPC 测试和 1 次 CO2-SA-WPC 测试。发现三个 WPC 测试的总重油采收率 (RF) 分别为 23.0%、29.4% 和 22.0%。相比之下,四次 SA-WPC 测试的总重油 RF 为 62。C3H8-SA-WPC 的压力消耗步长为 0%,ΔPEOR = 0.1 MPa,C3H8-SA-WPC 为 68.4%,ΔPEOR = 0.5 MPa,C3H8-SA-WPC 为 42.3%,ΔPEOR = 1.0 MPa,以及 29. CO2-SA-WPC 的百分比分别为 ΔPEOR = 0.5 MPa。总体而言,SA-WPC 的表现要优于 WPC,因为它能够有效溶解溶剂以降低稠油粘度,并且结合了提高石油采收率 (EOR) 和提高石油采收率 (IOR) 的机制。实验数据表明,当使用相同的溶剂注射压力时,C3H8 是比 CO2 更有效的溶剂。还发现,在三个 C3H8-SA-WPC 测试中,中压消耗步长 ΔPEOR = 0.5 MPa 导致重油 RF 最高。ΔPEOR = 1.0 MPa 时 C3H8-SA-WPC 为 3%,ΔPEOR = 0.5 MPa 时 CO2-SA-WPC 为 29.2%。总体而言,SA-WPC 的表现要优于 WPC,因为它能够有效溶解溶剂以降低稠油粘度,并且结合了提高石油采收率 (EOR) 和提高石油采收率 (IOR) 的机制。实验数据表明,当使用相同的溶剂注射压力时,C3H8 是比 CO2 更有效的溶剂。还发现,在三个 C3H8-SA-WPC 测试中,中压消耗步长 ΔPEOR = 0.5 MPa 导致重油 RF 最高。ΔPEOR = 1.0 MPa 时 C3H8-SA-WPC 为 3%,ΔPEOR = 0.5 MPa 时 CO2-SA-WPC 为 29.2%。总体而言,SA-WPC 的表现要好于 WPC,因为它能够有效溶解溶剂以降低稠油粘度,并且结合了提高石油采收率 (EOR) 和提高石油采收率 (IOR) 的机制。实验数据表明,当使用相同的溶剂注射压力时,C3H8 是比 CO2 更有效的溶剂。还发现,在三个 C3H8-SA-WPC 测试中,中压消耗步长 ΔPEOR = 0.5 MPa 导致重油 RF 最高。SA-WPC 的表现比 WPC 好得多,因为它可以有效溶解溶剂以降低重油粘度,并且结合了提高石油采收率 (EOR) 和提高石油采收率 (IOR) 的机制。实验数据表明,当使用相同的溶剂注射压力时,C3H8 是比 CO2 更有效的溶剂。还发现,在三个 C3H8-SA-WPC 测试中,中压消耗步长 ΔPEOR = 0.5 MPa 导致重油 RF 最高。SA-WPC 的表现比 WPC 好得多,因为它可以有效溶解溶剂以降低重油粘度,并且结合了提高采收率 (EOR) 和提高采油率 (IOR) 的机制。实验数据表明,当使用相同的溶剂注射压力时,C3H8 是比 CO2 更有效的溶剂。还发现,在三个 C3H8-SA-WPC 测试中,中压消耗步长 ΔPEOR = 0.5 MPa 导致重油 RF 最高。
更新日期:2020-06-01
down
wechat
bug