当前位置: X-MOL 学术Int. J. Therm. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A new method of acquiring perquisites of recirculation and vortex flow in sudden expansion solar water collector using vortex generator to augment heat transfer
International Journal of Thermal Sciences ( IF 4.5 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.ijthermalsci.2020.106346
S. Ramanathan , M.R. Thansekhar , P. Rajesh Kanna , Prem Gunnasegaran

Abstract The present study focuses on the heat transfer enhancement in sudden expansion channel (SEC) which is to be employed as solar water collector using vortex generator (VG) at different angles of attack. Expansion ratio (ER) of SEC is ascribed as 2:1. The analysis of heat transfer enhancement is carried out for various aspect ratios (AR) of ∞, 8 and 6 of SEC. The angle of attack (β) of VG is varied from 30° to 90° by an increment of 15° in each case. The results of this study are compared with that of simple rectangular channel (SRC) with VG. The flow is assumed to be laminar, steady and incompressible in the Reynolds (Re) number range investigated. Finite volume based commercial computational fluid dynamics (CFD) code FLUENT 16.2 has been used for solving three dimensional governing equations. The investigation shows that VGs are very effective in SEC than in SRC in enhancing the heat transfer against pressure drop at all angles of attack. Heat transfer rate increases with increase in AR of SEC while the change in friction factor with AR of SEC is negligible except at higher angle of attack. However with increasing angle of attack of VG, friction factor is on the rise. The results reveal that the enhancement of heat transfer rate is due to the combined effect of longitudinal vortex flow and flow separation. VG at β = 30° and 60° is found to have an optimal heat transfer and fluid flow characteristics in SEC.

中文翻译:

一种利用涡流发生器增强传热获得急胀式太阳能集水器再循环和涡流条件的新方法

摘要 本研究的重点是在不同攻角下使用涡流发生器 (VG) 作为太阳能集水器的突然膨胀通道 (SEC) 中的传热增强。SEC 的膨胀比 (ER) 被归为 2:1。对SEC的∞、8和6的各种纵横比(AR)进行了传热增强分析。在每种情况下,VG 的攻角 (β) 从 30° 到 90° 以 15° 的增量变化。本研究的结果与带有 VG 的简单矩形通道 (SRC) 的结果进行了比较。在所研究的雷诺 (Re) 数范围内,假定流动是层流、稳定和不可压缩的。基于有限体积的商业计算流体动力学 (CFD) 代码 FLUENT 16.2 已用于求解三维控制方程。调查表明,VGs 在 SEC 中比在 SRC 中更有效地增强热传递以抵抗所有攻角下的压降。传热速率随着 SEC 的 AR 的增加而增加,而摩擦因数随 SEC 的 AR 的变化可以忽略不计,除非在更高的攻角下。然而,随着VG迎角的增加,摩擦系数呈上升趋势。结果表明,传热速率的提高是由于纵向涡流和流动分离的共同作用。发现 β = 30° 和 60° 的 VG 在 SEC 中具有最佳的传热和流体流动特性。传热速率随着 SEC 的 AR 的增加而增加,而摩擦因数随 SEC 的 AR 的变化可以忽略不计,除非在更高的攻角下。然而,随着VG迎角的增加,摩擦系数呈上升趋势。结果表明,传热速率的提高是由于纵向涡流和流动分离的共同作用。发现 β = 30° 和 60° 的 VG 在 SEC 中具有最佳的传热和流体流动特性。传热速率随着 SEC 的 AR 的增加而增加,而摩擦因数随 SEC 的 AR 的变化可以忽略不计,除非在更高的迎角。然而,随着VG迎角的增加,摩擦系数呈上升趋势。结果表明,传热速率的提高是由于纵向涡流和流动分离的共同作用。发现 β = 30° 和 60° 的 VG 在 SEC 中具有最佳的传热和流体流动特性。
更新日期:2020-07-01
down
wechat
bug