当前位置: X-MOL 学术Food Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transcriptomics unravels the adaptive molecular mechanisms of Brettanomyces bruxellensis under SO2 stress in wine condition.
Food Microbiology ( IF 5.3 ) Pub Date : 2020-03-10 , DOI: 10.1016/j.fm.2020.103483
Federica Valdetara 1 , Miha Škalič 2 , Daniela Fracassetti 1 , Marli Louw 3 , Concetta Compagno 1 , Maret du Toit 3 , Roberto Foschino 1 , Uroš Petrovič 4 , Benoit Divol 3 , Ileana Vigentini 1
Affiliation  

Sulfur dioxide is generally used as an antimicrobial in wine to counteract the activity of spoilage yeasts, including Brettanomyces bruxellensis. However, this chemical does not exert the same effectiveness on different B. bruxellensis yeasts since some strains can proliferate in the final product leading to a negative sensory profile due to 4-ethylguaiacol and 4-ethylphenol. Thus, the capability of deciphering the general molecular mechanisms characterizing this yeast species' response in presence of SO2 stress could be considered strategic for a better management of SO2 in winemaking. A RNA-Seq approach was used to investigate the gene expression of two strains of B. bruxellensis, AWRI 1499 and CBS 2499 having different genetic backgrounds, when exposed to a SO2 pulse. Results revealed that sulphites affected yeast culturability and metabolism, but not volatile phenol production suggesting that a phenotypical heterogeneity could be involved for the SO2 cell adaptation. The transcriptomics variation in response to SO2 stress confirmed the strain-related response in B. bruxellensis and the GO analysis of common differentially expressed genes showed that the detoxification process carried out by SSU1 gene can be considered as the principal specific adaptive response to counteract the SO2 presence. However, nonspecific mechanisms can be exploited by cells to assist the SO2 tolerance; namely, the metabolisms related to sugar alcohol (polyols) and oxidative stress, and structural compounds.

中文翻译:

转录组学揭示了葡萄酒条件下SO2胁迫下Bruttanomyces bruxellensis的适应性分子机制。

二氧化硫通常在葡萄酒中用作抗微生物剂,以抵消腐败的酵母(包括Bruttnomyces bruxellensis)的活性。然而,由于4-乙基愈创木酚和4-乙基苯酚,某些菌株可能在终产物中增殖,导致负感官特征,因此该化学物质对不同的B. bruxellensis酵母没有发挥相同的功效。因此,在酿酒过程中,能够更好地管理SO2的策略被认为是解密在SO2胁迫下表征该酵母物种反应的一般分子机制的能力。当暴露于SO2脉冲时,使用RNA-Seq方法研究了具有不同遗传背景的两种B. bruxellensis菌株AWRI 1499和CBS 2499的基因表达。结果表明,亚硫酸盐影响酵母的可培养性和代谢,但不影响挥发性酚的产生,这表明表型异质性可能与SO2细胞适应有关。响应SO2胁迫的转录组学变化证实了布鲁氏菌中的菌株相关反应,并且常见差异表达基因的GO分析表明,SSU1基因进行的解毒过程可被视为抵消SO2的主要特异性适应性反应。存在。然而,细胞可以利用非特异性机制来辅助SO2耐受性。即与糖醇(多元醇)和氧化应激有关的代谢,以及结构化合物。SO2胁迫的转录组学变异证实了布鲁氏菌中的菌株相关反应,常见差异表达基因的GO分析表明,SSU1基因进行的解毒过程可被认为是抵消SO2的主要特异性适应性反应。存在。但是,细胞可以利用非特异性机制来辅助SO2耐受性。即与糖醇(多元醇)和氧化应激有关的代谢,以及结构化合物。SO2胁迫的转录组学变异证实了布鲁氏菌中的菌株相关反应,常见差异表达基因的GO分析表明,SSU1基因进行的解毒过程可被认为是抵消SO2的主要特异性适应性反应。存在。但是,细胞可以利用非特异性机制来辅助SO2耐受性。即与糖醇(多元醇)和氧化应激有关的代谢,以及结构化合物。然而,细胞可以利用非特异性机制来辅助SO2耐受性。即与糖醇(多元醇)和氧化应激有关的代谢,以及结构化合物。然而,细胞可以利用非特异性机制来辅助SO2耐受性。即与糖醇(多元醇)和氧化应激有关的代谢,以及结构化合物。
更新日期:2020-03-10
down
wechat
bug