当前位置: X-MOL 学术Appl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigations of autoignition and propagation of supersonic ethylene flames stabilized by a cavity
Applied Energy ( IF 11.2 ) Pub Date : 2020-03-10 , DOI: 10.1016/j.apenergy.2020.114795
Zhiwei Huang , Huangwei Zhang

Two analysis methods for time scale and energy balance relevant to flame ignition and stabilization in cavity-stabilized flames are developed. The interaction time of hot product in the recirculation zone of the cavity with the surrounding unburned mixture and the reaction induction time of the mixture are estimated in the time scale method. The energy release from chemical reactions and the energy loss due to species exchange in the recirculation zone are included in the energy balance method. The autoignition and propagation of supersonic ethylene flames in a model supersonic combustor with a cavity is investigated first using highly resolved large eddy simulation. The evolutions of the two time scales are then calculated in the ignition process of the supersonic ethylene flames. It is found that the time scale theory is well valid in the flame propagation and stabilization stages. The rates of energy generation and loss are then analyzed in the cavity. It is found that initially the local energy generation rate is relatively small, resulting in slow net energy accumulation in the cavity. Then the energy generation increases due to the intermittent flame propagation in the cavity, whereas the energy loss oscillates consistently since the burned gas leaves the cavity. Also, energy generation and loss are generally balanced in the cavity and all tend to zero after the flame is globally stabilized. The two methods present the characteristic time scales and energy balancing during the transient ignition process for the first time.



中文翻译:

腔稳定的超音速乙烯火焰的自燃和传播研究

提出了两种与火焰点火和稳定腔中火焰稳定有关的时间尺度和能量平衡的分析方法。用时间标度法估算腔体回流区中热产物与周围未燃烧混合物的相互作用时间以及混合物的反应诱导时间。能量平衡方法包括化学反应释放的能量和再循环区中由于物质交换而引起的能量损失。首先利用高度解析的大涡模拟研究了超声速乙烯火焰在带腔的模型超声速燃烧器中的自燃和传播。然后在超音速乙烯火焰的点火过程中计算出两个时间尺度的演变。发现时标理论在火焰传播和稳定阶段是有效的。然后在腔体内分析能量的产生和损失的速率。发现最初的局部能量产生速率相对较小,导致空腔中的净净能量积累缓慢。然后,由于火焰在空腔中的间歇传播而增加了能量的产生,而能量损失由于燃烧的气体离开空腔而持续振荡。而且,能量的产生和损失通常在型腔中达到平衡,并且在火焰整体稳定之后,所有这些趋于零。这两种方法首次呈现了瞬时点火过程中的特征时间标度和能量平衡。然后在腔体内分析能量的产生和损失的速率。发现最初的局部能量产生速率相对较小,导致空腔中的净净能量积累缓慢。然后,由于火焰在空腔中的间歇传播而增加了能量的产生,而能量损失由于燃烧的气体离开空腔而持续振荡。而且,能量的产生和损失通常在型腔中达到平衡,并且在火焰整体稳定之后,所有这些趋于零。这两种方法首次呈现了瞬时点火过程中的特征时间标度和能量平衡。然后在腔体内分析能量的产生和损失的速率。发现最初的局部能量产生速率相对较小,导致空腔中的净净能量积累缓慢。然后,由于火焰在空腔中的间歇传播而增加了能量的产生,而能量损失由于燃烧的气体离开空腔而持续振荡。而且,能量的产生和损失通常在型腔中达到平衡,并且在火焰整体稳定之后,所有这些趋于零。这两种方法首次呈现了瞬时点火过程中的特征时间标度和能量平衡。然后,由于火焰在空腔中的间歇传播而增加了能量的产生,而能量损失由于燃烧的气体离开空腔而持续振荡。而且,能量的产生和损失通常在型腔中达到平衡,并且在火焰总体稳定之后,所有这些趋于零。这两种方法首次呈现了瞬时点火过程中的特征时间标度和能量平衡。然后,由于火焰在空腔中的间歇传播而增加了能量的产生,而能量损失由于燃烧的气体离开空腔而持续振荡。而且,能量的产生和损失通常在型腔中达到平衡,并且在火焰总体稳定之后,所有这些趋于零。这两种方法首次呈现了瞬时点火过程中的特征时间标度和能量平衡。

更新日期:2020-03-10
down
wechat
bug