当前位置: X-MOL 学术ChemPhysChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pronounced Dependence of All-Polymer Solar Cells Photovoltaic Performance on the Alkyl Substituent Patterns in Large Bandgap Polymer Donors.
ChemPhysChem ( IF 2.9 ) Pub Date : 2020-04-01 , DOI: 10.1002/cphc.202000176
Jiale Chen 1 , Xuelong Huang 2 , Zhixiong Cao 1 , Shengjian Liu 1 , Kexin Liang 1 , Jinhai Liu 1 , Xuechen Jiao 3 , Jiaji Zhao 1 , Qingduan Li 1 , Yue-Peng Cai 1
Affiliation  

For all‐polymer solar cells which are composed of polymer donors and polymer acceptors, the effect of alkyl side chains on photovoltaic performance is a matter of some debate, and this effect remains difficult to forecast. In this concise contribution, we demonstrate that three alkyls namely branched alkyl 2‐butyloctyl (2BO), long linear alkyl n‐dodecyl (C12), and double‐short linear alkyl n‐hexyls (DC6) incorporated into the side chains of large bandgap polymer donor PBDT‐TTz can induce considerable, of significance, and different electronic, optical, and morphological parameters. Systematic studies shed light on the critical role of the double‐short linear alkyl n‐hexyls (DC6) in (i) producing large ionization potential value, (ii) increasing propensity of the polymer to order along the π‐stacking direction, (iii) generating polymer crystallites with more preferential “face‐on” orientation, consequently, (iv) improvement of carriers transportation, (v) suppression of charge recombination, (vi) reduction of energy loss in all‐polymer devices. In parallel, we unearth that the PBDT‐TTz with double‐short linear alkyl n‐hexyls (DC6) represents the highest efficiency of 8.3 %, whereas, the other two PBDT‐TTz analogues (2BO, C12) yield efficiencies of less than 3 % in optimized all‐polymer solar cells. Though branched or long linear alkyl side chains (2BO, C12) have been applied to provide the solution processability of conjugated polymers, motifs bearing multiple short linear alkyl substituents (DC6) are proved critical to the development of high performing polymers.

中文翻译:

大带隙聚合物给体中全聚合物太阳能电池光伏性能对烷基取代基模式的明显依赖性。

对于由聚合物供体和聚合物受体组成的全聚合物太阳能电池,烷基侧链对光伏性能的影响尚有待商debate,尚难以预测。在这个简明的贡献中,我们证明了三个烷基,即支链烷基2-丁基辛基(2BO),长直链烷基正十二烷基(C12)和双短直链烷基正己基(DC6)掺入大带隙的侧链中聚合物供体PBDT-TTz可以诱导出重要的意义,以及不同的电子,光学和形态学参数。系统研究揭示了双短直链烷基正己基(DC6)在(i)产生大电离势值,(ii)增加聚合物沿π堆积方向有序化的倾向,(iii)生成具有更优先“面朝”取向的聚合物微晶,因此,(iv)改善了载流子传输,(v)抑制了电荷复合,(vi)降低了全聚合物器件的能量损失。同时,我们发现带有双短线性烷基正己基(DC6)的PBDT-TTz的最高效率为8.3%,而其他两个PBDT-TTz类似物(2BO,C12)的效率低于3优化的全聚合物太阳能电池中的百分比。尽管已应用支链或长线性烷基侧链(2BO,C12)来提供共轭聚合物的溶液可加工性,但事实证明,带有多个短线性烷基取代基(DC6)的基序对开发高性能聚合物至关重要。(iv)改善载流子运输,(v)抑制电荷复合,(vi)减少全聚合物器件的能量损失。同时,我们发现带有双短线性烷基正己基(DC6)的PBDT-TTz的最高效率为8.3%,而其他两个PBDT-TTz类似物(2BO,C12)的效率低于3优化的全聚合物太阳能电池中的百分比。尽管已应用支链或长线性烷基侧链(2BO,C12)来提供共轭聚合物的溶液可加工性,但事实证明,带有多个短线性烷基取代基(DC6)的基序对开发高性能聚合物至关重要。(iv)改善载流子运输,(v)抑制电荷复合,(vi)减少全聚合物器件的能量损失。同时,我们发现带有双短线性烷基正己基(DC6)的PBDT-TTz的最高效率为8.3%,而其他两个PBDT-TTz类似物(2BO,C12)的效率低于3优化的全聚合物太阳能电池中的百分比。尽管已应用支链或长线性烷基侧链(2BO,C12)来提供共轭聚合物的溶液可加工性,但事实证明,带有多个短线性烷基取代基(DC6)的基序对开发高性能聚合物至关重要。我们发现具有双短线性烷基正己基(DC6)的PBDT-TTz代表了8.3%的最高效率,而其他两个PBDT-TTz类似物(2BO,C12)在优化后的效率不到3%全聚合物太阳能电池。尽管已应用支链或长线性烷基侧链(2BO,C12)来提供共轭聚合物的溶液可加工性,但事实证明,带有多个短线性烷基取代基(DC6)的基序对开发高性能聚合物至关重要。我们发现具有双短线性烷基正己基(DC6)的PBDT-TTz代表了8.3%的最高效率,而其他两个PBDT-TTz类似物(2BO,C12)在优化后的效率不到3%全聚合物太阳能电池。尽管已应用支链或长线性烷基侧链(2BO,C12)来提供共轭聚合物的溶液可加工性,但事实证明,带有多个短线性烷基取代基(DC6)的基序对开发高性能聚合物至关重要。
更新日期:2020-04-01
down
wechat
bug