当前位置: X-MOL 学术Chem. Soc. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Transition metal complex/gold nanoparticle hybrid materials.
Chemical Society Reviews ( IF 46.2 ) Pub Date : 2020-03-09 , DOI: 10.1039/c9cs00651f
Cristóbal Quintana 1 , Marie P Cifuentes , Mark G Humphrey
Affiliation  

Gold nanoparticles (AuNPs) are of considerable interest for diverse applications in areas such as medicine, catalysis, and sensing. AuNPs are generally surface-stabilized by organic matrices and coatings, and while the resultant organic compound (OC)/AuNP hybrids have been explored extensively, they are not suitable for certain applications (e.g. those necessitating reversible redox behaviour and/or long excited-state lifetimes), and they often suffer from low photo- and/or thermal stability. Transition metal complex (TMC)/AuNP hybrids have recently come to the fore as they circumvent some of the aforementioned shortcomings with OC/AuNP hybrids. This review summarizes progress thus far in the nascent field of TMC/AuNP hybrids. The structure and composition of extant TMC/AuNP hybrids are briefly reviewed and the range of TMCs employed in the shell of the hybrids are summarized, the one-phase, two-phase, and post-nanoparticle-synthesis synthetic methods to TMC/AuNP hybrids are discussed and contrasted, highlighting the advantages of variants of the last-mentioned procedure, and the utility of the various characterization techniques is discussed, emphasizing the need to employ multiple techniques in concert. Applications of TMC/AuNP hybrids in luminescence, electrochemical, and electro-optical sensing are described and critiqued, and their uses and potential in imaging, photo-dynamic therapy, nonlinear optics, and catalysis are assessed.

中文翻译:

过渡金属络合物/金纳米颗粒杂化材料。

金纳米颗粒(AuNPs)对于医学,催化和传感等领域的各种应用引起了极大的兴趣。AuNP通常通过有机基质和涂料进行表面稳定处理,尽管对有机化合物(OC)/ AuNP杂化物进行了广泛的研究,但它们不适用于某些应用(例如需要可逆氧化还原行为和/或长激发态的应用)寿命),并且它们通常遭受低的光稳定性和/或热稳定性。过渡金属配合物(TMC)/ AuNP杂化剂最近由于OC / AuNP杂化剂克服了上述缺点而备受关注。这篇综述总结了迄今为止在TMC / AuNP杂种的新生领域中的进展。简要回顾了现存的TMC / AuNP杂种的结构和组成,总结了在杂种壳中使用的TMC的范围,总结了TMC / AuNP杂种的一相,两相和纳米粒子合成方法。讨论和对比,强调了最后提到的过程的变体的优点,并讨论了各种表征技术的实用性,强调了需要同时使用多种技术。描述并提出了TMC / AuNP混合体在发光,电化学和电光传感中的应用,并对其进行了评估,并评估了它们在成像,光动力疗法,非线性光学和催化方面的用途和潜力。讨论和对比了TMC / AuNP杂化剂的合成方法和纳米后合成方法,突出了最后提到的方法的变体的优点,并讨论了各种表征技术的实用性,强调需要同时使用多种技术。描述并提出了TMC / AuNP混合体在发光,电化学和电光传感中的应用,并对其进行了评估,并评估了它们在成像,光动力疗法,非线性光学和催化方面的用途和潜力。讨论和对比了TMC / AuNP杂化剂的合成方法和纳米后合成方法,突出了最后提到的方法的变体的优点,并讨论了各种表征技术的实用性,强调需要同时使用多种技术。描述并提出了TMC / AuNP杂化物在发光,电化学和光电传感中的应用,并对其进行了评述,并评估了它们在成像,光动力疗法,非线性光学和催化方面的用途和潜力。
更新日期:2020-03-09
down
wechat
bug