当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Reputation-Based Maintenance in Case-Based Reasoning
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2019-11-28 , DOI: 10.1016/j.knosys.2019.105283
Nariman Nakhjiri; Maria Salamó; Miquel Sànchez-marrè

Case Base Maintenance algorithms update the contents of a case base in order to improve case-based reasoner performance. In this paper, we introduce a new case base maintenance method called Reputation-Based Maintenance (RBM) with the aim of increasing the classification accuracy of a Case-Based Reasoning system while reducing the size of its case base. The proposed RBM algorithm calculates a case property called Reputation for each member of the case base, the value of which reflects the competence of the related case. Based on this case property, several removal policies and maintenance methods have been designed, each focusing on different aspects of the case base maintenance. The performance of the RBM method was compared with well-known state-of-the-art algorithms. The tests were performed on 30 datasets selected from the UCI repository. The results show that the RBM method in all its variations achieves greater accuracy than a baseline CBR, while some variations significantly outperform the state-of-the-art methods. We particularly highlight the RBM_ACBR algorithm, which achieves the highest accuracy among the methods in the comparison to a statistically significant degree, and the RBMcr algorithm, which increases the baseline accuracy while removing, on average, over half of the case base.
更新日期:2020-03-09

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug