当前位置: X-MOL 学术Catal. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Path of electron transfer created in S-doped NH2-UiO-66 bridged ZnIn2S4/MoS2 nanosheet heterostructure for boosting photocatalytic hydrogen evolution
Catalysis Science & Technology ( IF 5 ) Pub Date : 2020-03-06 , DOI: 10.1039/d0cy00127a
Qi Ran 1, 2, 3, 4 , Zebin Yu 1, 2, 3, 4 , Ronghua Jiang 5, 6, 7, 8 , Lun Qian 1, 2, 3, 4 , Yanping Hou 1, 2, 3, 4, 9 , Fei Yang 10, 11, 12 , Fengyuan Li 1, 2, 3, 4 , Mingjie Li 1, 2, 3, 4 , Qianqian Sun 1, 2, 3, 4 , Heqing Zhang 1, 2, 3, 4
Affiliation  

Developing well-designed architectures plays a decisive role in accelerating photo-generated carrier transport in composite photocatalysts. Herein, a microporous sulfur-doped (S-doped) NH2-UiO-66 bridged ZnIn2S4/MoS2 sheet heterostructure photocatalyst is synthesized through thermolysis of sulfur rich precursors to functionalize the organic ligands of NH2-UiO-66 to boost photocatalytic efficiency. XPS spectra confirm the existence of S-doped NH2-UiO-66, and Raman spectra show transition metal-assisted sulfuration instead of carbonization. FT-IR spectra further confirm the formation of Zn–O–C covalent bonds at the interface between NH2-UiO-66 and ZnIn2S4. In particular, the Zn–O–C bonds preserve the energy of photo-generated electrons and inhibit the energy relaxation of electrons at the interface of the heterostructure. In addition, NH2-UiO-66 with a high photocatalytic response greatly facilitates the transport of photo-generated electrons not only as an electron transport bridge but also as an electron donor. Profiting from the unique design of the ternary composite, the sample exhibits excellent PHE performance. The obtained ZnIn2S4/NH2-UiO-66/5%-MoS2 (5.69 mmol h−1 g−1) exhibits the highest H2 evolution rate, which is 15 and 1.9 times higher than those of ZnIn2S4 (0.369 mmol h−1 g−1) and 5%-MoS2/ZnIn2S4 (2.93 mmol h−1 g−1), respectively. In addition, the apparent quantum efficiency of the ZnIn2S4/NH2-UiO-66/5%-MoS2 composite (7.95%) is higher than that of the 5%-MoS2/ZnIn2S4 composite (3.12%) at 420 nm. This work provides new insight into designing novel and highly efficient photocatalysts for photocatalytic hydrogen evolution.

中文翻译:

在S掺杂的NH2-UiO-66桥接的ZnIn2S4 / MoS2纳米片异质结构中产生的电子转移路径,以促进光催化氢的释放

开发精心设计的体系结构在加速复合光催化剂中光生载流子的传输中起决定性作用。在此,通过富硫前体的热分解,将NH 2 -UiO-66的有机配体官能化,合成了微孔硫掺杂(S掺杂)的NH 2 -UiO-66桥接的ZnIn 2 S 4 / MoS 2片状异质结构光催化剂。提高光催化效率。XPS光谱证实存在S掺杂的NH 2 -UiO-66,拉曼光谱显示过渡金属辅助的硫化而不是碳化。FT-IR光谱进一步证实在NH 2 -UiO-66与ZnIn之间的界面上形成Zn-O-C共价键24分。特别是,Zn–O–C键保留了光生电子的能量,并抑制了异质结构界面上电子的能量弛豫。另外,具有高光催化响应的NH 2 -UiO-66不仅促进作为电子传输桥而且作为电子供体的光生电子的传输。得益于三元复合材料的独特设计,该样品表现出出色的PHE性能。所获得的ZnIn 2 S 4 / NH 2 -UiO-66 / 5%-MoS 2(5.69 mmol h -1 g -1)表现出最高的H 2。析出速率分别比ZnIn 2 S 4(0.369 mmol h -1 g -1)和5%-MoS 2 / ZnIn 2 S 4(2.93 mmol h -1 g -1)分别高15和1.9倍。另外,ZnIn 2 S 4 / NH 2 -UiO-66 / 5%-MoS 2复合材料的表观量子效率(7.95%)高于5%-MoS 2 / ZnIn 2 S 4的表观量子效率。420 nm处的复合材料(3.12%)。这项工作为设计新颖高效的光催化氢析出光催化剂提供了新的见识。
更新日期:2020-03-06
down
wechat
bug