当前位置: X-MOL 学术Chem. Soc. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Peptide macrocyclization by transition metal catalysis
Chemical Society Reviews ( IF 46.2 ) Pub Date : 2020-03-06 , DOI: 10.1039/c9cs00366e
Daniel G. Rivera 1, 2, 3, 4, 5 , Gerardo M. Ojeda-Carralero 1, 2, 3, 4, 5 , Leslie Reguera 6, 7, 8, 9, 10 , Erik V. Van der Eycken 1, 2, 3, 4, 5
Affiliation  

Peptide macrocyclization has traditionally relied on lactam, lactone and disulfide bond-forming reactions that aim at introducing conformational constraints into small peptide sequences. With the advent of ruthenium-catalyzed ring-closing metathesis and copper-catalyzed alkyne–azide cycloaddition, peptide chemists embraced transition metal catalysis as a powerful macrocyclization tool with relevant applications in chemical biological and peptide drug discovery. This article provides a comprehensive overview of the reactivity and methodological diversification of metal-catalyzed peptide macrocyclization as a special class of late-stage peptide derivatization method. We report the evolution from classic palladium-catalyzed cross-coupling approaches to more modern oxidative versions based on C–H activation, heteroatom alkylation/arylation and annulation processes, in which aspects such as chemoselectivity and diversity generation at the ring-closing moiety became dominant over the last years. The transit from early cycloadditions and alkyne couplings as ring-closing steps to very recent 3d metal-catalyzed macrocyclization methods is highlighted. Similarly, the new trends in decarboxylative radical macrocyclizations and the interplay between photoredox and transition metal catalysis are included. This review charts future perspectives in the field hoping to encourage further progress and applications, while bringing attention to the countless possibilities available by diversifying not only the metal, but also the reactivity modes and tactics to bring peptide functional groups together and produce structurally diverse macrocycles.

中文翻译:

过渡金属催化肽的大环化

肽大环化传统上依靠内酰胺,内酯和二硫键形成反应,旨在将构象限制引入小的肽序列。随着钌催化的闭环复分解和铜催化的炔-叠氮化物环加成反应的出现,肽化学家将过渡金属催化作为一种​​强大的大环化工具,在化学生物学和肽药物发现中具有相关应用。本文提供了金属催化肽大环化的反应性和方法学多样化的综合概述,这种方法是一类特殊的后期肽衍生化方法。我们报道了从经典的钯催化交叉偶联方法到基于C–H活化的更现代的氧化反应形式的演变,杂原子烷基化/芳基化和环化过程,其中诸如闭环部分的化学选择性和多样性产生等方面在过去几年中占主导地位。强调了从早期的环加成和炔烃偶联作为闭环步骤向最近的3d金属催化的大环化方法的过渡。同样,还包括脱羧自由基大环化的新趋势以及光氧化还原和过渡金属催化之间的相互作用。这篇综述总结了该领域的未来前景,希望鼓励进一步的发展和应用,同时通过不仅使金属多样化,而且使肽官能团结合在一起并产生结构多样的大环的反应方式和策略,引起人们对无数种可能性的关注。在过去的几年中,诸如化学选择性和在闭环部分的多样性产生等方面变得占主导地位。强调了从早期的环加成和炔烃偶联作为闭环步骤向最近的3d金属催化的大环化方法的过渡。同样,还包括脱羧自由基大环化的新趋势以及光氧化还原和过渡金属催化之间的相互作用。这篇综述总结了该领域的未来前景,希望鼓励进一步的发展和应用,同时通过不仅使金属多样化,而且使肽官能团结合在一起并产生结构多样的大环的反应方式和策略,引起人们对无数种可能性的关注。在过去的几年中,其中诸如在闭环部分的化学选择性和多样性产生等方面变得占主导地位。强调了从早期的环加成和炔烃偶联作为闭环步骤向最近的3d金属催化的大环化方法的过渡。同样,还包括脱羧自由基大环化的新趋势以及光氧化还原和过渡金属催化之间的相互作用。这篇综述总结了该领域的未来前景,希望鼓励进一步的发展和应用,同时通过不仅使金属多样化,而且使肽官能团结合在一起并产生结构多样的大环的反应方式和策略,引起人们对无数种可能性的关注。
更新日期:2020-04-24
down
wechat
bug