当前位置: X-MOL 学术Mater. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interfacial bonding between graphene oxide and calcium silicate hydrate gel of ultra-high performance concrete
Materials and Structures ( IF 3.8 ) Pub Date : 2020-03-06 , DOI: 10.1617/s11527-020-01467-y
Hongyan Wan , Yu Zhang

The incorporation of graphene oxide (GO) into ultra-high performance concrete (UHPC) can solve the problems of brittle fracture and low tensile strength of UHPC to some extent. By means of molecular dynamics simulation, this paper provided an insight into the interfacial bonding between GO and calcium silicate hydrate (C-S-H) gel, the dominant component of bonding phase in cement-based materials, in the chemical environment of UHPC in terms of C-S-H/GO interfacial structure, energies, and mechanical properties and gave the comparison with the case of ordinary Portland cement (OPC) materials. The results show that, as compared with the case of OPC, the C-S-H produced in UHPC has more calcium and hydroxyls distributed in the interlayer, leading to larger interlayer spacing with more water molecules absorbed. Water and hydroxyls occupy the sites of interfacial chemical bonds and weakens the C-S-H/GO interfacial Ca–O ionic bonds and H-bond network, but serve as bridges connecting C-S-H gel and GO sheet. More interlayer calcium for the UHPC case leads to larger interfacial interaction energies, which results in the higher tensile strength of the C-S-H/GO interface of UHPC sample. During tensile process, water molecules in the interface deforms with the structure and forms H-bond network serving to C-S-H/GO adhesion, which improves ductility of the structure. Furthermore, the configuration during elongation that the edge of GO sheet is tightly attached to C-S-H indicates the strong strength of Ca–Ocoo − bonds.

中文翻译:

超高性能混凝土氧化石墨烯与硅酸钙水合物凝胶的界面结合

将氧化石墨烯(GO)掺入超高性能混凝土(UHPC)中,可以在一定程度上解决UHPC脆性断裂和抗拉强度低的问题。通过分子动力学模拟,本文深入了解了在 UHPC 化学环境中,GO 与水化硅酸钙 (CSH) 凝胶之间的界面结合,CSH/CSH GO 界面结构、能量和机械性能,并与普通硅酸盐水泥 (OPC) 材料的情况进行了比较。结果表明,与 OPC 相比,UHPC 产生的 CSH 有更多的钙和羟基分布在层间,导致层间距更大,吸收的水分子更多。水和羟基占据界面化学键的位置并削弱 CSH/GO 界面 Ca-O 离子键和 H 键网络,但作为连接 CSH 凝胶和 GO 片的桥梁。UHPC 情况下更多的层间钙导致更大的界面相互作用能,这导致 UHPC 样品的 CSH/GO 界面的拉伸强度更高。在拉伸过程中,界面中的水分子与结构一起变形并形成 H 键网络,用于 CSH/GO 粘附,从而提高结构的延展性。此外,延伸过程中 GO 片边缘与 CSH 紧密连接的构型表明 Ca-Ocoo - 键的强度很高。但作为连接 CSH 凝胶和 GO 片的桥梁。UHPC 情况下更多的层间钙导致更大的界面相互作用能,这导致 UHPC 样品的 CSH/GO 界面的拉伸强度更高。在拉伸过程中,界面中的水分子与结构一起变形并形成 H 键网络,用于 CSH/GO 粘附,从而提高结构的延展性。此外,延伸过程中 GO 片边缘与 CSH 紧密连接的构型表明 Ca-Ocoo - 键的强度很高。但作为连接 CSH 凝胶和 GO 片的桥梁。UHPC 情况下更多的层间钙导致更大的界面相互作用能,这导致 UHPC 样品的 CSH/GO 界面的拉伸强度更高。在拉伸过程中,界面中的水分子与结构一起变形并形成 H 键网络,用于 CSH/GO 粘附,从而提高结构的延展性。此外,延伸过程中 GO 片边缘与 CSH 紧密连接的构型表明 Ca-Ocoo - 键的强度很高。界面中的水分子随着结构变形并形成 H 键网络,用于 CSH/GO 粘附,从而提高结构的延展性。此外,延伸过程中 GO 片边缘与 CSH 紧密连接的构型表明 Ca-Ocoo - 键的强度很高。界面中的水分子随着结构变形并形成 H 键网络,用于 CSH/GO 粘附,从而提高结构的延展性。此外,延伸过程中 GO 片边缘与 CSH 紧密连接的构型表明 Ca-Ocoo - 键的强度很高。
更新日期:2020-03-06
down
wechat
bug