当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular Structure and Modeling of Water-Air and Ice-Air Interfaces Monitored by Sum-Frequency Generation.
Chemical Reviews ( IF 62.1 ) Pub Date : 2020-03-06 , DOI: 10.1021/acs.chemrev.9b00512
Fujie Tang 1, 2 , Tatsuhiko Ohto 3 , Shumei Sun 1, 4 , Jérémy R Rouxel 5 , Sho Imoto 1 , Ellen H G Backus 1, 4 , Shaul Mukamel 5 , Mischa Bonn 1 , Yuki Nagata 1, 6
Affiliation  

From a glass of water to glaciers in Antarctica, water-air and ice-air interfaces are abundant on Earth. Molecular-level structure and dynamics at these interfaces are key for understanding many chemical/physical/atmospheric processes including the slipperiness of ice surfaces, the surface tension of water, and evaporation/sublimation of water. Sum-frequency generation (SFG) spectroscopy is a powerful tool to probe the molecular-level structure of these interfaces because SFG can specifically probe the topmost interfacial water molecules separately from the bulk and is sensitive to molecular conformation. Nevertheless, experimental SFG has several limitations. For example, SFG cannot provide information on the depth of the interface and how the orientation of the molecules varies with distance from the surface. By combining the SFG spectroscopy with simulation techniques, one can directly compare the experimental data with the simulated SFG spectra, allowing us to unveil the molecular-level structure of water-air and ice-air interfaces. Here, we present an overview of the different simulation protocols available for SFG spectra calculations. We systematically compare the SFG spectra computed with different approaches, revealing the advantages and disadvantages of the different methods. Furthermore, we account for the findings through combined SFG experiments and simulations and provide future challenges for SFG experiments and simulations at different aqueous interfaces.

中文翻译:

通过求和频率生成监测的水-空气和冰-空气界面的分子结构和建模。

从南极的一杯水到冰川,地球上的水-空气和冰-空气界面非常丰富。这些界面上的分子级结构和动力学是理解许多化学/物理/大气过程的关键,包括冰面的光滑度,水的表面张力和水的蒸发/升华。和频生成(SFG)光谱是探测这些界面的分子级结构的强大工具,因为SFG可以与主体分开单独探测最顶层的界面水分子,并且对分子构象敏感。尽管如此,实验性SFG有一些局限性。例如,SFG无法提供有关界面深度以及分子取向如何随与表面距离的变化而变化的信息。通过将SFG光谱与模拟技术相结合,可以将实验数据与模拟的SFG光谱直接进行比较,从而使我们能够揭示水-空气和冰-空气界面的分子水平结构。在这里,我们概述了可用于SFG光谱计算的不同模拟协议。我们系统地比较了使用不同方法计算出的SFG谱图,揭示了不同方法的优缺点。此外,我们通过结合SFG实验和模拟对发现进行解释,并为在不同水界面的SFG实验和模拟提供了未来的挑战。使我们能够揭示水-空气和冰-空气界面的分子水平结构。在这里,我们概述了可用于SFG光谱计算的不同模拟协议。我们系统地比较了使用不同方法计算出的SFG谱图,揭示了不同方法的优缺点。此外,我们通过结合SFG实验和模拟对发现进行解释,并为在不同水界面的SFG实验和模拟提供了未来的挑战。使我们能够揭示水-空气和冰-空气界面的分子水平结构。在这里,我们概述了可用于SFG光谱计算的不同模拟协议。我们系统地比较了使用不同方法计算出的SFG谱图,揭示了不同方法的优缺点。此外,我们通过结合SFG实验和模拟对发现进行解释,并为在不同水界面的SFG实验和模拟提供了未来的挑战。
更新日期:2020-04-23
down
wechat
bug