当前位置: X-MOL 学术J. Mater. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The synergistic effect of 3D-printed microscale roughness surface and nanoscale feature on enhancing osteogenic differentiation and rapid osseointegration
Journal of Materials Science & Technology ( IF 10.9 ) Pub Date : 2020-03-05 , DOI: 10.1016/j.jmst.2019.12.030
Hui Wang , Jiaqiang Liu , Chengtao Wang , Steve Guofang Shen , Xudong Wang , Kaili Lin

Personalized precision therapy and rapid osseointegration are the main development directions of dental implants. 3D printing is a vital advanced manufacturing technology for personalized precision therapy. However, the osteogenesis of the 3D printed Ti6Al4V implants is unsatisfactory. From the bionic perspective, the hierarchical micro/nano-topography can mimic the microenvironment of the multilevel structure of natural bone tissue and may endow the implant surface with superior bioactivity. In the present study, the hierarchical micro/nano-topography was successfully fabricated by construction the nanoscale feature on 3D printed microscale roughness surface of 3D-printed Ti6Al4V implants by alkali-heat treatment and hydrothermal treatment. Then the cell biological responses in vitro and osseointegration performance in vivo were systematically evaluated. The hierarchical micro/nano-topography evidently increased the roughness, improved the hydrophilicity and accelerated the hydroxyapatite deposition and mineralization, which significantly enhanced the adhesion, differentiation and extracellular matrix mineralization of bone marrow derived mesenchymal stromal cells (BMSCs). Most importantly, the hierarchical micro/nano-topography on 3D-printed implants facilitated the new bone formation and rapid osseointegration in vivo. Our study suggested that 3D-printed implant with micro/nano-topography may be a promising candidate to be applied in orthopedic field to meet the need of customized therapy and rapid osseointegration.



中文翻译:

3D打印的微尺度粗糙度表面和纳米尺度特征对增强成骨分化和快速骨整合的协同作用

个性化的精密治疗和快速的骨整合是牙科植入物的主要发展方向。3D打印是用于个性化精确治疗的至关重要的先进制造技术。但是,3D打印的Ti6Al4V植入物的成骨作用并不令人满意。从仿生学的角度来看,分层的微观/纳米形貌可以模仿天然骨组织的多层结构的微环境,并可以赋予植入物表面卓越的生物活性。在本研究中,通过碱热处理和水热处理在3D打印的Ti6Al4V植入物的3D打印的微观粗糙度表面上构造纳米级特征,成功地制造了分层的微观/纳米形貌。然后在体外细胞生物学反应系统评价体内的骨结合性能。分层的微观/纳米形貌明显增加了粗糙度,改善了亲水性并加速了羟基磷灰石的沉积和矿化,这显着增强了骨髓间充质基质细胞(BMSCs)的粘附,分化和细胞外基质矿化。最重要的是,在3D打印的植入物上的分层显微/纳米形貌在体内促进了新的骨形成和快速的骨整合。我们的研究表明,具有微型/纳米形貌的3D打印植入物可能是有希望的候选物,可应用于骨科领域,以满足定制疗法和快速骨整合的需求。

更新日期:2020-04-21
down
wechat
bug