当前位置: X-MOL 学术Ann. Nucl. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Core thermal-hydraulic evaluation of a heat pipe cooled nuclear reactor
Annals of Nuclear Energy ( IF 1.9 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.anucene.2020.107412
Xiao Liu , Ran Zhang , Yu Liang , Simiao Tang , Chenglong Wang , Wenxi Tian , Zhuohua Zhang , Suizheng Qiu , Guanghui Su

Abstract Heat pipe cooled reactor has been proposed for applying in the space station and underwater exploration featured with high reliability, low noise level and compact structure. A typical design of a heat pipe cooled reactor system is HP-STMCs designed by the University of New Mexico. It is conceptually designed as a fast reactor, lithium-filled heat pipes that transfer heat to potassium heat pipes radiator and thermoelectric generators. In this paper, a code is developed for studying the operating thermal–hydraulic characteristics of the reactor core, which consists of core thermal–hydraulic model, neutron kinetics model and heat pipe startup model. In order to verify the code, a series of experiments about potassium heat pipe are operated. Steady-state and startup transient are performed by the code. The highest temperatures of fuel and matrix in reactor core show at the 2nd channel, which reach 1720 K and 1545 K from the results of steady-state. As for the startup transient, the code for heat pipe cooled reactor core successfully predicts key parameters during startup transient, such as each layer material temperature of reactor core, a single heat pipe’s temperature response and heat rejection power. The code has initially predicted the transient response of the heat pipe cooled reactor under power increasing rates of 800 W/s and130W/s. It is discussed that the startup strategy of power increasing rates is based on heat pipe transition temperature (916 K). This research provides valuable experience for designing and formulating control strategies of the heat pipe cooled reactor.

中文翻译:

热管冷却核反应堆堆芯热工水力评价

摘要 热管冷却反应堆具有可靠性高、噪声低、结构紧凑等特点,可用于空间站和水下探测。热管冷却反应堆系统的典型设计是新墨西哥大学设计的 HP-STMC。它在概念上被设计为一个快速反应堆,充满锂的热管将热量传递给钾热管散热器和热电发电机。本文开发了一个用于研究反应堆堆芯运行热工水力特性的程序,它由堆芯热工水力模型、中子动力学模型和热管启动模型组成。为了验证代码,进行了一系列关于钾热管的实验。稳态和启动瞬态由代码执行。堆芯中燃料和基体的最高温度出现在第二通道,稳态结果分别达到1720 K和1545 K。对于启动瞬态,热管冷却堆芯代码成功预测了启动瞬态过程中的关键参数,如堆芯各层材料温度、单根热管的温度响应和排热功率。该规范初步预测了热管冷却反应堆在800W/s和130W/s功率增长速率下的瞬态响应。讨论了功率增加率的启动策略是基于热管转变温度(916 K)。该研究为设计和制定热管冷却反应堆的控制策略提供了宝贵的经验。稳态结果分别达到 1720 K 和 1545 K。对于启动瞬态,热管冷却堆芯代码成功预测了启动瞬态过程中的关键参数,如堆芯各层材料温度、单根热管的温度响应和排热功率。该规范初步预测了热管冷却反应堆在800W/s和130W/s功率增长速率下的瞬态响应。讨论了功率增加率的启动策略是基于热管转变温度(916 K)。该研究为设计和制定热管冷却反应堆的控制策略提供了宝贵的经验。稳态结果分别达到 1720 K 和 1545 K。对于启动瞬态,热管冷却堆芯代码成功预测了启动瞬态过程中的关键参数,如堆芯各层材料温度、单根热管的温度响应和排热功率。该规范初步预测了热管冷却反应堆在800W/s和130W/s功率增长速率下的瞬态响应。讨论了功率增加率的启动策略是基于热管转变温度(916 K)。该研究为设计和制定热管冷却反应堆的控制策略提供了宝贵的经验。热管冷却堆芯代码成功预测了启动瞬态过程中的关键参数,如反应堆堆芯各层材料温度、单个热管的温度响应和排热功率。该规范初步预测了热管冷却反应堆在800W/s和130W/s功率增长速率下的瞬态响应。讨论了功率增加率的启动策略是基于热管转变温度(916 K)。该研究为设计和制定热管冷却反应堆的控制策略提供了宝贵的经验。热管冷却堆芯代码成功预测了启动瞬态过程中的关键参数,如反应堆堆芯各层材料温度、单个热管的温度响应和排热功率。该规范初步预测了热管冷却反应堆在800W/s和130W/s功率增长速率下的瞬态响应。讨论了功率增加率的启动策略是基于热管转变温度(916 K)。该研究为设计和制定热管冷却反应堆的控制策略提供了宝贵的经验。该规范初步预测了热管冷却反应堆在800W/s和130W/s功率增长速率下的瞬态响应。讨论了功率增加率的启动策略是基于热管转变温度(916 K)。该研究为设计和制定热管冷却反应堆的控制策略提供了宝贵的经验。该规范初步预测了热管冷却反应堆在800W/s和130W/s功率增长速率下的瞬态响应。讨论了功率增加率的启动策略是基于热管转变温度(916 K)。该研究为设计和制定热管冷却反应堆的控制策略提供了宝贵的经验。
更新日期:2020-07-01
down
wechat
bug