当前位置: X-MOL 学术Synth. Met. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Concentration-control in all-solution processed semiconducting polymer doping and high conductivity performances
Synthetic Metals ( IF 4.4 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.synthmet.2020.116352
Khaoula Ferchichi , Ramzi Bourguiga , Kamal Lmimouni , Sébastien Pecqueur

Abstract Simultaneously optimizing performances, processability and fabrication cost of organic electronic materials is the continual source of compromise hindering the development of disruptive applications. In this work, we identified a strategy to achieve record conductivity values of one of the most benchmarked semiconducting polymers by doping with an entirely solution-processed, water-free and cost-effective technique. High electrical conductivity for poly(3-hexylthiophene) up to 21 S/cm has been achieved, using a commercially available electron acceptor as both a Lewis acid and an oxidizing agent. While we managed water-free solution-processing a three-time higher conductivity for P3HT with a very affordable/available chemical, near-field microscopy reveals the existence of concentration-dependent higher-conductivity micro-domains for which furthermore process optimization might access to even higher performances. In the perpetual quest of reaching higher performances for organic electronics, this work shall greatly unlock applications maturation requiring higher-scale processability and lower fabrication costs concomitant of higher performances and new functionalities, in the current context where understanding the doping mechanism of such class of materials remains of the greatest interest.

中文翻译:

全溶液加工半导体聚合物掺杂中的浓度控制和高导电性能

摘要 同时优化有机电子材料的性能、可加工性和制造成本是阻碍破坏性应用发展的持续妥协的根源。在这项工作中,我们确定了一种策略,通过掺杂完全溶液处理、无水且具有成本效益的技术,实现最基准的半导体聚合物之一的电导率值。使用市售电子受体作为路易斯酸和氧化剂,聚(3-己基噻吩)的高电导率已达到 21 S/cm。虽然我们使用非常实惠/可用的化学品进行了无水溶液处理,使 P3HT 的电导率提高了三倍,近场显微镜揭示了浓度依赖的高电导微域的存在,进一步的工艺优化可能会获得更高的性能。在不断追求有机电子产品的更高性能的过程中,在了解此类材料的掺杂机制的当前背景下,这项工作将极大地解锁需要更高规模可加工性和更低制造成本的应用成熟度以及更高的性能和新功能最感兴趣的遗骸。
更新日期:2020-04-01
down
wechat
bug