当前位置: X-MOL 学术Rev. Sci. Instrum. › 论文详情
A deep neural network based hierarchical multi-label classification method.
Review of Scientific Instruments ( IF 1.587 ) Pub Date : 2020-02-01 , DOI: 10.1063/1.5141161
Shou Feng,Chunhui Zhao,Ping Fu

With the accumulation of data generated by biological experimental instruments, using hierarchical multi-label classification (HMC) methods to process these data for gene function prediction has become very important. As the structure of the widely used Gene Ontology (GO) annotation is the directed acyclic graph (DAG), GO based gene function prediction can be changed to the HMC problem for the DAG of GO. Due to HMC, algorithms for tree ontology are not applicable to DAG, and the accuracy of these algorithms is low. Therefore, existing algorithms cannot satisfy the requirements of gene function prediction. To solve this problem, this paper proposes a DAG hierarchical multi-label classification algorithm, C2AE-DAGLabel algorithm. The C2AE-DAGLabel algorithm uses the Canonical Correlated AutoEncoder (C2AE) model as the classifier and designs a DAGLabel algorithm to solve the DAG hierarchical constraint problem. The DAGLabel algorithm can improve the classification accuracy by ensuring that the classification results meet the requirements of the hierarchical constraint. In the experiment, human gene data annotated with GO are used to evaluate the performance of the proposed algorithm. The experimental results show that compared with other state-of-the-art algorithms, the C2AE-DAGLabel algorithm has the best performance in solving the hierarchical multi-label classification problem for DAG.
更新日期:2020-02-01

 

全部期刊列表>>
聚焦商业经济政治法律
智控未来
控制与机器人
化学研究精选
欢迎探索2019年最具下载量的地球科学论文
招募海内外科研人才,上自然官网
基因组学对精准公共卫生的影响,专辑征稿
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
大连化物所
香港大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug