当前位置: X-MOL 学术Anal. Bioanal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoporous thin films in optical waveguide spectroscopy for chemical analytics.
Analytical and Bioanalytical Chemistry ( IF 4.3 ) Pub Date : 2020-02-27 , DOI: 10.1007/s00216-020-02452-8
Wolfgang Knoll 1, 2 , Omar Azzaroni 1, 3 , Hatice Duran 4 , Julia Kunze-Liebhäuser 5 , King Hang Aaron Lau 6 , Erik Reimhult 7 , Basit Yameen 8
Affiliation  

Spectroscopy with planar optical waveguides is still an active field of research for the quantitative analysis of various supramolecular surface architectures and processes, and for applications in integrated optical chip communication, direct chemical sensing, etc. In this contribution, we summarize some recent development in optical waveguide spectroscopy using nanoporous thin films as the planar substrates that can guide the light just as well as bulk thin films. This is because the nanoporosity is at a spacial length-scale that is far below the wavelength of the guided light; hence, it does not lead to an enhanced scattering or additional losses of the optical guided modes. The pores have mainly two effects: they generate an enormous inner surface (up to a factor of 100 higher than the mere geometric dimensions of the planar substrate) and they allow for the exchange of material and charges between the two sides of the solid thin film. We demonstrate this for several different scenarios including anodized aluminum oxide layers for the ultrasensitive determination of the refractive index of fluids, or the label-free detection of small analytes binding from the pore inner volume to receptors immobilized on the pore surface. Using a thin film of Ti metal for the anodization results in a nanotube array offering an even further enhanced inner surface and the possibility to apply electrical potentials via the resulting TiO2 semiconducting waveguide structure. Nanoporous substrates fabricated from SiNx thin films by colloid lithography, or made from SiO2 by e-beam lithography, will be presented as examples where the porosity is used to allow for the passage of ions in the case of tethered lipid bilayer membranes fused on top of the light-guiding layer, or the transport of protons through membranes used in fuel cell applications. The final example that we present concerns the replication of the nanopore structure by polymers in a process that leads to a nanorod array that is equally well suited to guide the light as the mold; however, it opens a totally new field for integrated optics formats for direct chemical and biomedical sensing with an extension to even molecularly imprinted structures. Graphical abstract.

中文翻译:

用于化学分析的光波导光谱学中的纳米多孔薄膜。

带有平面光波导的光谱学仍然是研究各种超分子表面结构和工艺,以及在集成光学芯片通信,直接化学传感等方面的应用的活跃研究领域。在此贡献中,我们总结了光学领域的一些最新进展。使用纳米多孔薄膜作为平面衬底的波导光谱,可以像块状薄膜一样引导光。这是因为纳米孔隙度的空间尺度远低于引导光的波长。因此,它不会导致光导模的散射增加或额外损失。毛孔主要有两个作用:它们产生巨大的内表面(比平面基板的仅仅几何尺寸大100倍),并且允许在固态薄膜的两侧之间交换材料和电荷。我们在几种不同的情况下证明了这一点,包括阳极氧化氧化铝层,用于超灵敏地确定流体的折射率,或无标记地检测从孔隙内部体积结合到固定在孔隙表面的受体的小分析物。使用钛金属薄膜进行阳极氧化可形成纳米管阵列,从而进一步提高内表面,并有可能通过所得的TiO2半导体波导结构施加电势。由SiNx薄膜通过胶体光刻制造的纳米多孔基底,或通过电子束光刻法由SiO2制成的例子,其中在束缚的脂质双层膜融合在导光层顶部的情况下,使用孔隙度允许离子通过,或质子的传输通过燃料电池应用中的膜。我们提出的最后一个例子涉及聚合物在工艺中复制纳米孔结构的过程,该工艺导致纳米棒阵列同样适用于像模具一样引导光。然而,它为直接化学和生物医学传感的集成光学格式打开了一个全新的领域,甚至扩展到了分子印迹结构。图形概要。作为例子,将给出在多孔的脂质双层膜融合在导光层的顶部的情况下,使用孔隙率以允许离子通过的情况,或质子通过燃料电池应用中的膜的传输。我们提出的最后一个例子涉及聚合物在工艺中复制纳米孔结构的过程,该工艺导致纳米棒阵列同样适用于像模具一样引导光。但是,它为直接化学和生物医学传感的集成光学格式打开了一个全新的领域,甚至可以扩展到分子印迹结构。图形概要。作为例子,将给出其中在将束缚的脂质双层膜融合在导光层顶部上的情况下使用孔隙率以允许离子通过的情况,或质子通过燃料电池应用中使用的膜的传输的示例。我们提出的最后一个例子涉及聚合物在工艺中复制纳米孔结构的过程,该工艺导致纳米棒阵列同样适用于像模具一样引导光。但是,它为直接化学和生物医学传感的集成光学格式打开了一个全新的领域,甚至可以扩展到分子印迹结构。图形概要。我们提出的最后一个例子涉及聚合物在工艺中复制纳米孔结构的过程,该工艺导致纳米棒阵列同样适用于像模具一样引导光。但是,它为直接化学和生物医学传感的集成光学格式打开了一个全新的领域,甚至可以扩展到分子印迹结构。图形概要。我们提出的最后一个例子涉及聚合物在工艺中复制纳米孔结构的过程,该工艺导致纳米棒阵列同样适用于像模具一样引导光。但是,它为直接化学和生物医学传感的集成光学格式打开了一个全新的领域,甚至可以扩展到分子印迹结构。图形概要。
更新日期:2020-02-27
down
wechat
bug