当前位置: X-MOL 学术J. Photochem. Photobiol. B Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancement of the biological autoluminescence by mito-liposomal gold nanoparticle nanocarriers.
Journal of Photochemistry and Photobiology B: Biology ( IF 5.4 ) Pub Date : 2020-02-12 , DOI: 10.1016/j.jphotobiol.2020.111812
Hadi Sardarabadi 1 , Djamel Eddine Chafai 2 , Fatemeh Gheybi 3 , Pezhman Sasanpour 1 , Hashem Rafii-Tabar 1 , Michal Cifra 2
Affiliation  

One of the most important barriers to the detection of the biological autoluminescence (BAL) from biosystems using a non-invasive monitoring approach, in both the in vivo and the in vitro applications, is its very low signal intensity (< 1000 photons/s/cm2). Experimental studies have revealed that the formation of electron excited species, as a result of reactions of biomolecules with reactive oxygen species (ROS), is the principal biochemical source of the BAL which occurs during the cell metabolism. Mitochondria, as the most important organelles involved in oxidative metabolism, are considered to be the main intracellular BAL source. Hence, in order to achieve the BAL enhancement via affecting the mitochondria, we prepared a novel mitochondrial-liposomal nanocarrier with two attractive features including the intra-liposomal gold nanoparticle synthesizing ability and the mitochondria penetration capability. The results indicate that these nanocarriers (with the average size of 131.1 ± 20.1 nm) are not only able to synthesize the gold nanoparticles within them (with the average size of 15 nm) and penetrate into the U2OS cell mitochondria, but they are also able to amplify the BAL signals. Our results open new possibilities for the use of biological autoluminescence as a non-invasive and label-free monitoring method in nanomedicine and biotechnology.

中文翻译:

线粒体脂质体金纳米颗粒纳米载体增强生物自发光。

在体内和体外应用中,使用无创监测方法从生物系统检测生物自发光(BAL)的最重要障碍之一是其信号强度非常低(<1000光子/秒/平方厘米)。实验研究表明,由于生物分子与活性氧(ROS)反应而形成的电子激发物种是BAL的主要生化来源,它是在细胞代谢过程中发生的。线粒体作为参与氧化代谢的最重要细胞器,被认为是细胞内BAL的主要来源。因此,为了通过影响线粒体实现BAL增强,我们制备了一种新型的线粒体-脂质体纳米载体,具有两个诱人的特征,包括脂质体内金纳米颗粒的合成能力和线粒体穿透能力。结果表明,这些纳米载体(平均尺寸为131.1±20.1 nm)不仅能够合成其中的金纳米颗粒(平均尺寸为15 nm)并渗透到U2OS细胞线粒体中,而且还能够放大BAL信号。我们的结果为生物自发光作为纳米药物和生物技术中的一种非侵入性且无标签的监测方法提供了新的可能性。1 nm)不仅能够合成其中的金纳米颗粒(平均大小为15 nm)并渗透到U2OS细胞线粒体中,而且还能够放大BAL信号。我们的结果为生物自发光作为纳米药物和生物技术中的一种非侵入性且无标签的监测方法提供了新的可能性。1 nm)不仅能够合成其中的金纳米颗粒(平均大小为15 nm)并渗透到U2OS细胞线粒体中,而且还能够放大BAL信号。我们的结果为使用生物自发光作为纳米药物和生物技术中的一种非侵入性且无标签的监测方法开辟了新的可能性。
更新日期:2020-02-12
down
wechat
bug