当前位置: X-MOL 学术J. Tissue Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nano-graphene oxide/polyurethane nanofibers: mechanically flexible and myogenic stimulating matrix for skeletal tissue engineering.
Journal of Tissue Engineering ( IF 8.2 ) Pub Date : 2020-01-23 , DOI: 10.1177/2041731419900424
Seung Bin Jo 1 , Uyanga Erdenebileg 1, 2 , Khandmaa Dashnyam 1, 2, 3 , Guang-Zhen Jin 1, 2, 3 , Jae-Ryung Cha 2 , Ahmed El-Fiqi 1 , Jonathan C Knowles 2, 3, 4, 5 , Kapil Dev Patel 1, 2, 3 , Hae-Hyoung Lee 1, 3, 6 , Jung-Hwan Lee 1, 2, 3, 6 , Hae-Won Kim 1, 2, 3, 6
Affiliation  

For skeletal muscle engineering, scaffolds that can stimulate myogenic differentiation of cells while possessing suitable mechanical properties (e.g. flexibility) are required. In particular, the elastic property of scaffolds is of importance which helps to resist and support the dynamic conditions of muscle tissue environment. Here, we developed highly flexible nanocomposite nanofibrous scaffolds made of polycarbonate diol and isosorbide-based polyurethane and hydrophilic nano-graphene oxide added at concentrations up to 8%. The nano-graphene oxide incorporation increased the hydrophilicity, elasticity, and stress relaxation capacity of the polyurethane-derived nanofibrous scaffolds. When cultured with C2C12 cells, the polyurethane-nano-graphene oxide nanofibers enhanced the initial adhesion and spreading of cells and further the proliferation. Furthermore, the polyurethane-nano-graphene oxide scaffolds significantly up-regulated the myogenic mRNA levels and myosin heavy chain expression. Of note, the cells on the flexible polyurethane-nano-graphene oxide nanofibrous scaffolds could be mechanically stretched to experience dynamic tensional force. Under the dynamic force condition, the cells expressed significantly higher myogenic differentiation markers at both gene and protein levels and exhibited more aligned myotubular formation. The currently developed polyurethane-nano-graphene oxide nanofibrous scaffolds, due to their nanofibrous morphology and high mechanical flexibility, along with the stimulating capacity for myogenic differentiation, are considered to be a potential matrix for future skeletal muscle engineering.

中文翻译:

纳米氧化石墨烯/聚氨酯纳米纤维:用于骨骼组织工程的机械柔性和生肌刺激基质。

对于骨骼肌工程,需要能够刺激细胞成肌分化同时具有合适的机械性能(例如柔韧性)的支架。特别地,支架的弹性性质是重要的,其有助于抵抗和支持肌肉组织环境的动态条件。在这里,我们开发了高度柔性的纳米复合纳米纤维支架,该支架由聚碳酸酯二醇和异山梨醇基聚氨酯以及浓度高达8%的亲水性纳米氧化石墨烯制成。纳米氧化烯的引入增加了聚氨酯衍生的纳米纤维支架的亲水性,弹性和应力松弛能力。当与C2C12细胞一起培养时,聚氨酯-纳米氧化石墨烯纳米纤维增强了细胞的初始粘附和扩散,并进一步促进了增殖。此外,聚氨酯-纳米石墨烯氧化物支架显着上调了肌源性mRNA水平和肌球蛋白重链表达。值得注意的是,柔性聚氨酯-纳米氧化烯纳米纤维支架上的细胞可以机械拉伸以承受动态张力。在动态作用力条件下,细胞在基因和蛋白质水平上均表达明显更高的成肌分化标记,并表现出更对齐的肌管形成。当前开发的聚氨酯-纳米氧化烯纳米纤维支架,由于其纳米纤维形态和高机械柔韧性,以及对肌原性分化的刺激能力,被认为是未来骨骼肌工程的潜在基质。聚氨酯-纳米石墨烯氧化物支架显着上调了肌源性mRNA水平和肌球蛋白重链表达。值得注意的是,柔性聚氨酯-纳米氧化烯纳米纤维支架上的细胞可以机械拉伸以承受动态张力。在动态作用力条件下,细胞在基因和蛋白质水平上均表达明显更高的成肌分化标记,并表现出更对齐的肌管形成。当前开发的聚氨酯-纳米氧化烯纳米纤维支架,由于其纳米纤维形态和高机械柔韧性,以及对肌原性分化的刺激能力,被认为是未来骨骼肌工程的潜在基质。聚氨酯-纳米石墨烯氧化物支架显着上调了肌源性mRNA水平和肌球蛋白重链表达。值得注意的是,柔性聚氨酯-纳米氧化烯纳米纤维支架上的细胞可以机械拉伸以承受动态张力。在动态作用力条件下,细胞在基因和蛋白质水平上均表达明显更高的成肌分化标记,并表现出更对齐的肌管形成。当前开发的聚氨酯-纳米氧化烯纳米纤维支架,由于其纳米纤维形态和高机械柔韧性,以及对肌原性分化的刺激能力,被认为是未来骨骼肌工程的潜在基质。值得注意的是,柔性聚氨酯-纳米氧化烯纳米纤维支架上的细胞可以机械拉伸以承受动态张力。在动态作用力条件下,细胞在基因和蛋白质水平上均表达明显更高的成肌分化标记,并表现出更对齐的肌管形成。当前开发的聚氨酯-纳米氧化烯纳米纤维支架,由于其纳米纤维形态和高机械柔韧性,以及对肌原性分化的刺激能力,被认为是未来骨骼肌工程的潜在基质。值得注意的是,柔性聚氨酯-纳米氧化烯纳米纤维支架上的细胞可以机械拉伸以承受动态张力。在动态作用力条件下,细胞在基因和蛋白质水平上均表达明显更高的成肌分化标记,并表现出更对齐的肌管形成。由于其纳米纤维的形态和高的机械柔韧性,以及对成肌分化的刺激能力,目前开发的聚氨酯-纳米-氧化石墨烯纳米纤维支架被认为是未来骨骼肌工程的潜在基质。这些细胞在基因和蛋白质水平上均表现出明显更高的成肌分化标记,并表现出更对齐的肌管形成。当前开发的聚氨酯-纳米氧化烯纳米纤维支架,由于其纳米纤维形态和高机械柔韧性,以及对肌原性分化的刺激能力,被认为是未来骨骼肌工程的潜在基质。这些细胞在基因和蛋白质水平上均表现出明显更高的成肌分化标记,并表现出更对齐的肌管形成。当前开发的聚氨酯-纳米氧化烯纳米纤维支架,由于其纳米纤维形态和高机械柔韧性,以及对肌原性分化的刺激能力,被认为是未来骨骼肌工程的潜在基质。
更新日期:2020-04-21
down
wechat
bug