当前位置: X-MOL 学术Dev. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The conserved and divergent roles of Prdm3 and Prdm16 in zebrafish and mouse craniofacial development.
Developmental Biology ( IF 2.7 ) Pub Date : 2020-02-08 , DOI: 10.1016/j.ydbio.2020.02.006
Lomeli Carpio Shull 1 , Rwik Sen 1 , Johannes Menzel 2 , Susumu Goyama 3 , Mineo Kurokawa 4 , Kristin Bruk Artinger 1
Affiliation  

The formation of the craniofacial skeleton is a highly dynamic process that requires proper orchestration of various cellular processes in cranial neural crest cell (cNCC) development, including cell migration, proliferation, differentiation, polarity and cell death. Alterations that occur during cNCC development result in congenital birth defects and craniofacial abnormalities such as cleft lip with or without cleft palate. While the gene regulatory networks facilitating neural crest development have been extensively studied, the epigenetic mechanisms by which these pathways are activated or repressed in a temporal and spatially regulated manner remain largely unknown. Chromatin modifiers can precisely modify gene expression through a variety of mechanisms including histone modifications such as methylation. Here, we investigated the role of two members of the PRDM (Positive regulatory domain) histone methyltransferase family, Prdm3 and Prdm16 in craniofacial development using genetic models in zebrafish and mice. Loss of prdm3 or prdm16 in zebrafish causes craniofacial defects including hypoplasia of the craniofacial cartilage elements, undefined posterior ceratobranchials, and decreased mineralization of the parasphenoid. In mice, while conditional loss of Prdm3 in the early embryo proper causes mid-gestation lethality, loss of Prdm16 caused craniofacial defects including anterior mandibular hypoplasia, clefting in the secondary palate and severe middle ear defects. In zebrafish, prdm3 and prdm16 compensate for each other as well as a third Prdm family member, prdm1a. Combinatorial loss of prdm1a, prdm3, and prdm16 alleles results in severe hypoplasia of the anterior cartilage elements, abnormal formation of the jaw joint, complete loss of the posterior ceratobranchials, and clefting of the ethmoid plate. We further determined that loss of prdm3 and prdm16 reduces methylation of histone 3 lysine 9 (repression) and histone 3 lysine 4 (activation) in zebrafish. In mice, loss of Prdm16 significantly decreased histone 3 lysine 9 methylation in the palatal shelves but surprisingly did not change histone 3 lysine 4 methylation. Taken together, Prdm3 and Prdm16 play an important role in craniofacial development by maintaining temporal and spatial regulation of gene regulatory networks necessary for proper cNCC development and these functions are both conserved and divergent across vertebrates.

中文翻译:

Prdm3和Prdm16在斑马鱼和小鼠颅面发育中的保守和发散作用。

颅面骨骼的形成是一个高度动态的过程,需要对颅神经rest细胞(cNCC)发育中的各种细胞过程进行适当的编排,包括细胞迁移,增殖,分化,极性和细胞死亡。在cNCC发育过程中发生的变化会导致先天性先天缺陷和颅面异常,例如唇or裂或无with裂。虽然已经广泛研究了促进神经rest发育的基因调控网络,但是以时间和空间调控方式激活或抑制这些途径的表观遗传机制仍然未知。染色质修饰剂可以通过多种机制精确修饰基因表达,包括组蛋白修饰(例如甲基化)。这里,我们使用斑马鱼和小鼠的遗传模型调查了PRDM(正调控域)组蛋白甲基转移酶家族的两个成员Prdm3和Prdm16在颅面发育中的作用。斑马鱼中prdm3或prdm16的缺失会导致颅面缺陷,包括颅面软骨元件发育不全,未定义的后支状支气管以及副蝶骨的矿化减少。在小鼠中,虽然早期胚胎中有条件的Prdm3丧失会导致妊娠中期致死率,但Prdm16的丧失会导致颅面缺陷,包括前下颌发育不全,继发c裂和严重的中耳缺陷。在斑马鱼中,prdm3和prdm16以及第三个Prdm家族成员prdm1a会互相补偿。prdm1a,prdm3,prdm16和prdm16等位基因会导致前软骨元素严重发育不良,颌骨关节异常形成,后支状支支气管完全丧失以及筛筛板裂开。我们进一步确定,丢失prdm3和prdm16会减少斑马鱼中组蛋白3赖氨酸9(抑制)和组蛋白3赖氨酸4(激活)的甲基化。在小鼠中,Prdm16的缺失显着降低了shelves架中的组蛋白3赖氨酸9甲基化,但出乎意料的是并未改变组蛋白3赖氨酸4甲基化。综上所述,Prdm3和Prdm16在颅面发育中起着重要的作用,通过维持适当的cNCC发育所必需的基因调控网络的时空分布,这些功能在脊椎动物中既保守又分歧。颌骨关节异常形成,后颈支气管完全丧失,筛骨板裂开。我们进一步确定,丢失prdm3和prdm16会减少斑马鱼中组蛋白3赖氨酸9(抑制)和组蛋白3赖氨酸4(激活)的甲基化。在小鼠中,Prdm16的缺失显着降低了shelves架中的组蛋白3赖氨酸9甲基化,但出乎意料的是并未改变组蛋白3赖氨酸4甲基化。综上所述,Prdm3和Prdm16在颅面发育中起着重要的作用,通过维持适当的cNCC发育所必需的基因调控网络的时空分布,这些功能在脊椎动物中既保守又分歧。颌骨关节异常形成,后颈支气管完全丧失,筛骨板裂开。我们进一步确定,丢失prdm3和prdm16会减少斑马鱼中组蛋白3赖氨酸9(抑制)和组蛋白3赖氨酸4(激活)的甲基化。在小鼠中,Prdm16的缺失显着降低了shelves架中的组蛋白3赖氨酸9甲基化,但出乎意料的是并未改变组蛋白3赖氨酸4甲基化。综上所述,Prdm3和Prdm16在颅面发育中起着重要的作用,通过维持适当的cNCC发育所必需的基因调控网络的时空分布,这些功能在脊椎动物中既保守又分歧。我们进一步确定,丢失prdm3和prdm16会减少斑马鱼中组蛋白3赖氨酸9(抑制)和组蛋白3赖氨酸4(激活)的甲基化。在小鼠中,Prdm16的缺失显着降低了shelves架中的组蛋白3赖氨酸9甲基化,但出乎意料的是并未改变组蛋白3赖氨酸4甲基化。综上所述,Prdm3和Prdm16在颅面发育中起着重要的作用,通过维持适当的cNCC发育所必需的基因调控网络的时空分布,这些功能在脊椎动物中既保守又分歧。我们进一步确定,丢失prdm3和prdm16会减少斑马鱼中组蛋白3赖氨酸9(抑制)和组蛋白3赖氨酸4(激活)的甲基化。在小鼠中,Prdm16的缺失显着降低了shelves架中的组蛋白3赖氨酸9甲基化,但出乎意料的是并未改变组蛋白3赖氨酸4甲基化。综上所述,Prdm3和Prdm16在颅面发育中起着重要的作用,通过维持适当的cNCC发育所必需的基因调控网络的时空调控,这些功能在脊椎动物中既保守又分歧。Prdm16的丢失显着降低了shelves架中的组蛋白3赖氨酸9甲基化,但出乎意料的是并未改变组蛋白3赖氨酸4甲基化。综上所述,Prdm3和Prdm16在颅面发育中起着重要的作用,通过维持适当的cNCC发育所必需的基因调控网络的时空分布,这些功能在脊椎动物中既保守又分歧。Prdm16的丢失显着降低了shelves架中的组蛋白3赖氨酸9甲基化,但出乎意料的是并未改变组蛋白3赖氨酸4甲基化。综上所述,Prdm3和Prdm16在颅面发育中起着重要的作用,通过维持适当的cNCC发育所必需的基因调控网络的时空分布,这些功能在脊椎动物中既保守又分歧。
更新日期:2020-04-20
down
wechat
bug