当前位置: X-MOL 学术Int. J. Numer. Method. Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards efficient design optimization of a miniaturized thermoelectric generator for electrically active implants via model order reduction and submodeling technique.
International Journal for Numerical Methods in Biomedical Engineering ( IF 2.1 ) Pub Date : 2020-02-21 , DOI: 10.1002/cnm.3311
Chengdong Yuan 1, 2 , Stefanie Kreß 2 , Gunasheela Sadashivaiah 2 , Evgenii B Rudnyi 3 , Dennis Hohlfeld 2 , Tamara Bechtold 1, 2
Affiliation  

Thermoelectric generators (TEG) convert the thermal energy into electrical energy and are under investigation as a power supply for medical implants. To improve the performance of TEG, the design optimization process through finite element model simulation is preferred by biomedical engineers. This paper aims to provide an efficient method of speeding up the design optimization process of TEG. A three‐dimensional realistic human torso model incorporating the TEG is investigated, where the internal heat transfer in human tissue is characterized by Pennes bioheat equation. In addition, convection, radiation, and evaporation effects at the skin surface are applied to identify the heat transfer effects between the human body and the environment. To speed up finite element simulation of the large‐scale human torso model, projection‐based model order reduction (MOR) is applied for generation of a compact but highly accurate model. Parametric MOR (pMOR) further enables generating a parameter‐independent compact model. For an efficient design optimization of TEG, this compact human torso model is applied within a thermal submodeling approach. Its temperature distribution results are back‐projected and used as boundary conditions for the TEG submodel. The achieved speed‐up in simulation time, demonstrated in this work, clearly indicates that the design optimization process of TEG is more efficient with the combination of MOR and submodeling techniques.

中文翻译:

通过模型降阶和子建模技术,实现用于电活性植入物的小型热电发电机的高效设计优化。

热电发生器(TEG)将热能转换为电能,并且正在研究用作医疗植入物的电源。为了提高TEG的性能,生物医学工程师更喜欢通过有限元模型仿真进行设计优化。本文旨在提供一种有效的方法来加快TEG的设计优化过程。研究了包含TEG的三维逼真的人体躯干模型,其中人体组织中的内部传热由Pennes生物热方程表征。另外,在皮肤表面的对流,辐射和蒸发效应被应用于识别人体与环境之间的热传递效应。为了加快大型人体躯干模型的有限元模拟,基于投影的模型降阶(MOR)用于生成紧凑但高度准确的模型。参数MOR(pMOR)还可以生成与参数无关的紧凑模型。为了有效地优化TEG,在热子建模方法中应用了这种紧凑的人体躯干模型。对它的温度分布结果进行反投影,并将其用作TEG子模型的边界条件。这项工作证明了仿真速度的提高,这清楚地表明,结合MOR和子建模技术,TEG的设计优化过程更加有效。这种紧凑的人体躯干模型在热子建模方法中得到了应用。对它的温度分布结果进行反投影,并将其用作TEG子模型的边界条件。这项工作证明了仿真速度的提高,这清楚地表明,结合MOR和子建模技术,TEG的设计优化过程更加有效。这种紧凑的人体躯干模型在热子建模方法中得到了应用。对它的温度分布结果进行反投影,并将其用作TEG子模型的边界条件。这项工作证明了仿真速度的提高,这清楚地表明,结合MOR和子建模技术,TEG的设计优化过程更加有效。
更新日期:2020-02-21
down
wechat
bug