当前位置: X-MOL 学术Environ. Health Perspect. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity.
Environmental Health Perspectives ( IF 10.4 ) Pub Date : 2020-02-07 , DOI: 10.1289/ehp5580
Kamel Mansouri 1, 2, 3 , Nicole Kleinstreuer 4 , Ahmed M Abdelaziz 5 , Domenico Alberga 6 , Vinicius M Alves 7, 8 , Patrik L Andersson 9 , Carolina H Andrade 7 , Fang Bai 10 , Ilya Balabin 11 , Davide Ballabio 12 , Emilio Benfenati 13 , Barun Bhhatarai 14 , Scott Boyer 15 , Jingwen Chen 16 , Viviana Consonni 12 , Sherif Farag 8 , Denis Fourches 17 , Alfonso T García-Sosa 18 , Paola Gramatica 14 , Francesca Grisoni 12 , Chris M Grulke 1 , Huixiao Hong 19 , Dragos Horvath 20 , Xin Hu 21 , Ruili Huang 21 , Nina Jeliazkova 22 , Jiazhong Li 10 , Xuehua Li 16 , Huanxiang Liu 10 , Serena Manganelli 13 , Giuseppe F Mangiatordi 6 , Uko Maran 18 , Gilles Marcou 20 , Todd Martin 23 , Eugene Muratov 8 , Dac-Trung Nguyen 21 , Orazio Nicolotti 6 , Nikolai G Nikolov 24 , Ulf Norinder 15 , Ester Papa 14 , Michel Petitjean 25 , Geven Piir 18 , Pavel Pogodin 26 , Vladimir Poroikov 26 , Xianliang Qiao 16 , Ann M Richard 1 , Alessandra Roncaglioni 13 , Patricia Ruiz 27 , Chetan Rupakheti 23, 28 , Sugunadevi Sakkiah 19 , Alessandro Sangion 14 , Karl-Werner Schramm 5 , Chandrabose Selvaraj 19 , Imran Shah 1 , Sulev Sild 18 , Lixia Sun 29 , Olivier Taboureau 25 , Yun Tang 29 , Igor V Tetko 30, 31 , Roberto Todeschini 12 , Weida Tong 19 , Daniela Trisciuzzi 6 , Alexander Tropsha 8 , George Van Den Driessche 17 , Alexandre Varnek 20 , Zhongyu Wang 16 , Eva B Wedebye 24 , Antony J Williams 1 , Hongbin Xie 16 , Alexey V Zakharov 21 , Ziye Zheng 9 , Richard S Judson 1
Affiliation  

BACKGROUND Endocrine disrupting chemicals (EDCs) are xenobiotics that mimic the interaction of natural hormones and alter synthesis, transport, or metabolic pathways. The prospect of EDCs causing adverse health effects in humans and wildlife has led to the development of scientific and regulatory approaches for evaluating bioactivity. This need is being addressed using high-throughput screening (HTS) in vitro approaches and computational modeling. OBJECTIVES In support of the Endocrine Disruptor Screening Program, the U.S. Environmental Protection Agency (EPA) led two worldwide consortiums to virtually screen chemicals for their potential estrogenic and androgenic activities. Here, we describe the Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) efforts, which follows the steps of the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP). METHODS The CoMPARA list of screened chemicals built on CERAPP's list of 32,464 chemicals to include additional chemicals of interest, as well as simulated ToxCast™ metabolites, totaling 55,450 chemical structures. Computational toxicology scientists from 25 international groups contributed 91 predictive models for binding, agonist, and antagonist activity predictions. Models were underpinned by a common training set of 1,746 chemicals compiled from a combined data set of 11 ToxCast™/Tox21 HTS in vitro assays. RESULTS The resulting models were evaluated using curated literature data extracted from different sources. To overcome the limitations of single-model approaches, CoMPARA predictions were combined into consensus models that provided averaged predictive accuracy of approximately 80% for the evaluation set. DISCUSSION The strengths and limitations of the consensus predictions were discussed with example chemicals; then, the models were implemented into the free and open-source OPERA application to enable screening of new chemicals with a defined applicability domain and accuracy assessment. This implementation was used to screen the entire EPA DSSTox database of ∼875,000 chemicals, and their predicted AR activities have been made available on the EPA CompTox Chemicals dashboard and National Toxicology Program's Integrated Chemical Environment. https://doi.org/10.1289/EHP5580.

中文翻译:

CoMPARA:雄激素受体活性的协同建模项目。

背景技术破坏内分泌的化学物质(EDC)是异种生物,其模仿天然激素的相互作用并改变合成,运输或代谢途径。EDC对人类和野生生物造成不利健康影响的前景已导致评估生物活性的科学和监管方法的发展。使用高通量筛选(HTS)体外方法和计算模型解决了这一需求。目的为了支持内分泌干扰物筛查计划,美国环境保护局(EPA)领导了两个全球性财团对它们潜在的雌激素和雄激素活性进行化学筛选。在这里,我们描述了雄激素受体活性(CoMPARA)工作的协作建模项目,它遵循协作雌激素受体活性预测项目(CERAPP)的步骤。方法在CERAPP的32,464种化学物质清单的基础上,筛选出的化学物质的CoMPARA清单包括感兴趣的其他化学物质以及模拟的ToxCast™代谢物,共有55,450种化学结构。来自25个国际小组的计算毒理学科学家为结合,激动剂和拮抗剂活性预测提供了91种预测模型。通过11种ToxCast™/ Tox21 HTS体外试验的组合数据集汇编的1,746种化学药品的通用训练集来支持模型。结果使用从不同来源提取的精选文献数据评估了所得模型。为了克服单一模型方法的局限性,CoMPARA预测被合并到共识模型中,该模型为评估集提供了约80%的平均预测准确性。讨论使用示例性化学品讨论了共识预测的优缺点。然后,将模型实施到免费和开放源代码的OPERA应用程序中,从而能够通过定义的适用范围和准确性评估来筛选新化学品。该实现用于筛选约875,000种化学物质的整个EPA DSSTox数据库,并且其预测的AR活动已在EPA CompTox化学品仪表板和国家毒理学计划的“综合化学环境”中提供。https://doi.org/10.1289/EHP5580。讨论使用示例性化学品讨论了共识预测的优缺点。然后,将模型实施到免费和开放源代码的OPERA应用程序中,从而能够通过定义的适用范围和准确性评估来筛选新化学品。该实施方案用于筛选整个EPA DSSTox数据库,该数据库包含约875,000种化学物质,其预测的AR活动已在EPA CompTox化学品仪表板和国家毒理学计划的“综合化学环境”中提供。https://doi.org/10.1289/EHP5580。讨论使用示例性化学品讨论了共识预测的优缺点。然后,将模型实施到免费和开放源代码的OPERA应用程序中,从而能够通过定义的适用范围和准确性评估来筛选新化学品。该实现用于筛选约875,000种化学物质的整个EPA DSSTox数据库,并且其预测的AR活动已在EPA CompTox化学品仪表板和国家毒理学计划的“综合化学环境”中提供。https://doi.org/10.1289/EHP5580。该实现用于筛选约875,000种化学物质的整个EPA DSSTox数据库,并且其预测的AR活动已在EPA CompTox化学品仪表板和国家毒理学计划的“综合化学环境”中提供。https://doi.org/10.1289/EHP5580。该实现用于筛选约875,000种化学物质的整个EPA DSSTox数据库,并且其预测的AR活动已在EPA CompTox化学品仪表板和国家毒理学计划的“综合化学环境”中提供。https://doi.org/10.1289/EHP5580。
更新日期:2020-02-07
down
wechat
bug