当前位置: X-MOL 学术Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Culture of neural stem cells on conductive and microgrooved polymeric scaffolds fabricated via electrospun fiber-template lithography.
Biomedical Materials ( IF 4 ) Pub Date : 2020-05-19 , DOI: 10.1088/1748-605x/ab763b
Madhumita Patel 1 , Ji Hong Min , Min-Ho Hong , Hyo-Jung Lee , Seungmin Kang , Seong Yi , Won-Gun Koh
Affiliation  

We developed polymeric scaffolds that can provide both topographical and electrical stimuli on mouse neural stem cells (mNSCs) for potential use in nerve tissue engineering. In contrast to conventional patterning techniques such as imprinting, soft/photolithography, and three-dimensional printing, microgroove patterns were generated by using aligned electrospun fibers as templates, via a process denoted as electrospun fiber-template lithography. The preparation of polyvinylpyrrolidone fibers, followed by the deposition of poly(lactic-co-glycolic acid) (PLGA) and the removal of the fiber template, produced freestanding PLGA scaffolds with microgrooves having widths of 1.72 ± 0.24 μm. The subsequent deposition of polypyrrole (PPy) via chemical oxidative polymerization added conductivity to the microgrooved PLGA scaffolds. The resultant scaffolds were cytocompatible with mNSCs. The microgroove patterns enhanced the alignment and elongation of mNSCs, and the PPy layer promoted the interaction of cells with the surface by forming more and longer filopodia compared with the nonconductive surface. Finally, the neuron differentiation of mNSCs was evaluated by monitoring the Tuj-1 neuronal gene expression. The presence of both microgrooves and the conductive PPy layer enhanced the neuronal differentiation of mNSCs even without electrical stimulation, and the neuronal differentiation was further enhanced by stimulation with a sufficient electrical pulse (1.0 V).

中文翻译:

在通过电纺纤维模板光刻制造的导电和微槽聚合物支架上培养神经干细胞。

我们开发了聚合物支架,可以为小鼠神经干细胞 (mNSC) 提供地形和电刺激,以用于神经组织工程。与传统的图案化技术(如压印、软/光刻和 3D 印刷)相比,微槽图案是通过使用对齐的电纺纤维作为模板,通过称为电纺纤维模板光刻的过程产生的。聚乙烯吡咯烷酮纤维的制备,然后是聚(乳酸-乙醇酸共聚物)(PLGA)的沉积和纤维模板的去除,产生了具有 1.72 ± 0.24 μm 宽度的微槽的独立式 PLGA 支架。随后通过化学氧化聚合沉积聚吡咯 (PPy) 为微槽 PLGA 支架增加了导电性。所得支架与 mNSC 具有细胞相容性。微槽图案增强了 mNSCs 的排列和伸长,与非导电表面相比,PPy 层通过形成更多更长的丝状伪足来促进细胞与表面的相互作用。最后,通过监测 Tuj-1 神经元基因表达来评估 mNSCs 的神经元分化。即使没有电刺激,微槽和导电 PPy 层的存在也增强了 mNSCs 的神经元分化,并且通过足够的电脉冲 (1.0 V) 刺激进一步增强了神经元分化。与非导电表面相比,PPy 层通过形成更多更长的丝状伪足来促进细胞与表面的相互作用。最后,通过监测 Tuj-1 神经元基因表达来评估 mNSCs 的神经元分化。即使没有电刺激,微槽和导电 PPy 层的存在也增强了 mNSCs 的神经元分化,并且通过足够的电脉冲 (1.0 V) 刺激进一步增强了神经元分化。与非导电表面相比,PPy 层通过形成更多更长的丝状伪足来促进细胞与表面的相互作用。最后,通过监测 Tuj-1 神经元基因表达来评估 mNSCs 的神经元分化。即使没有电刺激,微槽和导电 PPy 层的存在也增强了 mNSCs 的神经元分化,并且通过足够的电脉冲 (1.0 V) 刺激进一步增强了神经元分化。
更新日期:2020-05-18
down
wechat
bug