当前位置: X-MOL 学术Appl. Spectrosc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
EXPRESS: Hyperspectral Raman Imaging Using a Spatial Heterodyne Raman Spectrometer with a Microlens Array
Applied Spectroscopy ( IF 3.5 ) Pub Date : 2020-08-01 , DOI: 10.1177/0003702820906222
Ashley Allen 1 , Abigail Waldron 1 , Joshua M Ottaway 1 , J Chance Carter 1 , S Michael Angel 1
Affiliation  

A new hyperspectral Raman imaging technique is described using a spatial heterodyne Raman spectrometer (SHRS) and a microlens array (MLA). The new technique enables the simultaneous acquisition of Raman spectra over a wide spectral range at spatially isolated locations within two spatial dimensions (x, y) using a single exposure on a charge-coupled device (CCD) or other detector types such as a complementary metal-oxide semiconductor (CMOS) detector. In the SHRS system described here, a 4 × 4 mm MLA with 1600, 100 µm diameter lenslets is used to image the sample, with each lenslet illuminating a different region of the SHRS diffraction gratings and forming independent fringe images on the CCD. The fringe images from each lenslet contain the fully encoded Raman spectrum of the region of the sample “seen” by the lenslet. Since the SHRS requires no moving parts, all fringe images can be measured simultaneously with a single detector exposure, and in principle using a single laser shot, in the case of a pulsed laser. In this proof of concept paper, hyperspectral Raman spectra of a wide variety of heterogeneous samples are used to characterize the technique in terms of spatial and spectral resolution tradeoffs. It is shown that the spatial resolution is a function of the diameter of the MLA lenslets, while the number of spatial elements that can be resolved is equal to the number of MLA lenslets that can be imaged onto the SHRS detector. The spectral resolution depends on the spatial resolution desired, and the number of grooves illuminated on both diffraction gratings by each lenslet, or combination of lenslets in cases where they are grouped.

中文翻译:

EXPRESS:使用带有微透镜阵列的空间外差拉曼光谱仪进行高光谱拉曼成像

使用空间外差拉曼光谱仪 (SHRS) 和微透镜阵列 (MLA) 描述了一种新的高光谱拉曼成像技术。新技术可以使用电荷耦合器件 (CCD) 或其他类型的探测器(例如互补金属)上的单次曝光,在两个空间维度 (x, y) 内的空间隔离位置同时采集宽光谱范围内的拉曼光谱-氧化物半导体 (CMOS) 检测器。在此处描述的 SHRS 系统中,使用具有 1600 个、100 µm 直径小透镜的 4 × 4 mm MLA 对样品进行成像,每个小透镜照亮 SHRS 衍射光栅的不同区域并在 CCD 上形成独立的条纹图像。来自每个小透镜的条纹图像包含小透镜“看到”的样本区域的完全编码拉曼光谱。由于 SHRS 不需要移动部件,因此可以通过一次检测器曝光同时测量所有条纹图像,原则上在脉冲激光的情况下使用单次激光发射。在此概念验证论文中,使用各种异质样本的高光谱拉曼光谱来表征该技术的空间和光谱分辨率权衡。结果表明,空间分辨率是 MLA 小透镜直径的函数,而可分辨的空间元素数量等于可成像到 SHRS 探测器上的 MLA 小透镜数量。光谱分辨率取决于所需的空间分辨率,以及每个小透镜在两个衍射光栅上照射的凹槽数量,或者在它们分组的情况下小透镜的组合。所有条纹图像都可以通过单次检测器曝光同时测量,原则上使用单次激光发射,在脉冲激光的情况下。在此概念验证论文中,使用各种异质样本的高光谱拉曼光谱来表征该技术的空间和光谱分辨率权衡。结果表明,空间分辨率是 MLA 小透镜直径的函数,而可分辨的空间元素数量等于可成像到 SHRS 探测器上的 MLA 小透镜数量。光谱分辨率取决于所需的空间分辨率,以及每个小透镜在两个衍射光栅上照射的凹槽数量,或者在它们分组的情况下小透镜的组合。所有条纹图像都可以通过单次检测器曝光同时测量,原则上使用单次激光照射(在脉冲激光的情况下)。在此概念验证论文中,使用各种异质样本的高光谱拉曼光谱来表征该技术的空间和光谱分辨率权衡。结果表明,空间分辨率是 MLA 小透镜直径的函数,而可分辨的空间元素数量等于可成像到 SHRS 探测器上的 MLA 小透镜数量。光谱分辨率取决于所需的空间分辨率,以及每个小透镜在两个衍射光栅上照射的凹槽数量,或者在它们分组的情况下小透镜的组合。
更新日期:2020-08-01
down
wechat
bug